-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy patheval_helper.py
executable file
·379 lines (327 loc) · 12.6 KB
/
eval_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import numpy as np
import paddle.fluid as fluid
import math
from config import cfg
import six
import numpy as np
import cv2
import Polygon as plg
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
from config import cfg
import logging
logger = logging.getLogger(__name__)
def get_key_dict(out, data, key):
res = {}
for name in key:
if name == 'bbox':
res[name] = np.array(out)
else:
res[name] = np.array(data[name])
return res
def get_labels_maps():
default_labels_maps = {1: 'text'}
if cfg.dataset == 'icdar2015':
return default_labels_maps
labels_map = {}
with open(os.path.join(cfg.data_dir, 'label_list')) as f:
lines = f.readlines()
for idx, line in enumerate(lines):
labels_map[idx + 1] = line.strip()
return labels_map
def draw_bounding_box_on_image(image_path,
image_name,
nms_out,
im_scale,
draw_threshold=0.8):
#if image is None:
image = Image.open(os.path.join(image_path, image_name))
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
labels_map = get_labels_maps()
for dt in np.array(nms_out):
num_id, score = dt.tolist()[:2]
x1, y1, x2, y2, x3, y3, x4, y4 = dt.tolist()[2:] / im_scale
if score < draw_threshold:
continue
draw.line(
[(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
width=2,
fill='red')
if image.mode == 'RGB':
draw.text((x1, y1), labels_map[num_id], (255, 255, 0))
print("image with bbox drawed saved as {}".format(image_name))
image.save(image_name)
def polygon_from_points(points):
"""
Returns a Polygon object to use with the Polygon2 class from a list of 8 points: x1,y1,x2,y2,x3,y3,x4,y4
"""
res_boxes = np.empty([1, 8], dtype='int32')
res_boxes[0, 0] = int(points[0])
res_boxes[0, 4] = int(points[1])
res_boxes[0, 1] = int(points[2])
res_boxes[0, 5] = int(points[3])
res_boxes[0, 2] = int(points[4])
res_boxes[0, 6] = int(points[5])
res_boxes[0, 3] = int(points[6])
res_boxes[0, 7] = int(points[7])
point_mat = res_boxes[0].reshape([2, 4]).T
return plg.Polygon(point_mat)
def clip_box(bbox, im_info):
h = im_info[0]
w = im_info[1]
res = []
for b in bbox:
pts = b.reshape(4, 2)
pts[np.where(pts < 0)] = 1
pts[np.where(pts[:, 0] > w), 0] = w - 1
pts[np.where(pts[:, 1] > h), 1] = h - 1
pts = pts.reshape(-1)
pts /= im_info[2]
res.append(pts)
return np.array(res)
def get_union(det, gt):
area_det = det.area()
area_gt = gt.area()
return area_det + area_gt - get_intersection(det, gt)
def get_intersection_over_union(det, gt):
try:
return get_intersection(det, gt) / get_union(det, gt)
except:
return 0
def get_intersection(det, gt):
inter = det & gt
if len(inter) == 0:
return 0
return inter.area()
def parse_gt(result, im_id):
for res in result:
if res['im_id'] == im_id:
gt_boxes = list(res['gt_box'])
gt_class = res['gt_class']
is_difficult = res['is_difficult'].reshape(-1)
objects = []
for i in range(len(gt_boxes)):
object_struct = {}
object_struct['bbox'] = gt_boxes[i]
object_struct['class'] = gt_class[i]
if is_difficult[i] == 1:
object_struct['difficult'] = 1
else:
object_struct['difficult'] = 0
object_struct['im_id'] = im_id
objects.append(object_struct)
return objects
def calculate_ap(rec, prec):
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
return ap
def icdar_map(result, class_name, ovthresh):
im_ids = []
for res in result:
im_ids.append(res['im_id'][0][0])
recs = {}
for i, im_id in enumerate(im_ids):
recs[str(im_id)] = parse_gt(result, im_id)
class_recs = {}
npos = 0
for k in im_ids:
res = [obj for obj in recs[str(k)] if obj['class'] == class_name]
bbox = np.array([x['bbox'] for x in res])
difficult = np.array([x['difficult'] for x in res]).astype(np.bool)
det = [False] * len(res)
npos = npos + sum(~difficult)
class_recs[k] = {'bbox': bbox, 'difficult': difficult, 'det': det}
image_ids = []
confidence = []
bbox = []
for res in result:
im_info = res['im_info'][0]
pred_boxes = res['bbox']
for box in pred_boxes:
if box[0] == class_name:
image_ids.append(res['im_id'][0][0])
confidence.append(box[1])
clipd_box = clip_box(box[2:].reshape(-1, 8), im_info)
bbox.append(clipd_box[0])
confidence = np.array(confidence)
sorted_ind = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
bbox = np.array(bbox)
bbox = bbox[sorted_ind, :]
image_ids = [image_ids[x] for x in sorted_ind]
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
res = class_recs[image_ids[d]]
bb = bbox[d, :].astype(float)
ovmax = -np.inf
gt_bbox = res['bbox'].astype(float)
if gt_bbox.size > 0:
# compute overlaps
gt_bbox_xmin = np.min(gt_bbox[:, 0::2], axis=1)
gt_bbox_ymin = np.min(gt_bbox[:, 1::2], axis=1)
gt_bbox_xmax = np.max(gt_bbox[:, 0::2], axis=1)
gt_bbox_ymax = np.max(gt_bbox[:, 1::2], axis=1)
bb_xmin = np.min(bb[0::2])
bb_ymin = np.min(bb[1::2])
bb_xmax = np.max(bb[0::2])
bb_ymax = np.max(bb[1::2])
ixmin = np.maximum(gt_bbox_xmin, bb_xmin)
iymin = np.maximum(gt_bbox_ymin, bb_ymin)
ixmax = np.minimum(gt_bbox_xmax, bb_xmax)
iymax = np.minimum(gt_bbox_ymax, bb_ymax)
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih
# union
uni = ((bb_xmax - bb_xmin + 1.) * (bb_ymax - bb_ymin + 1.) +
(gt_bbox_xmax - gt_bbox_xmin + 1.) *
(gt_bbox_ymax - gt_bbox_ymin + 1.) - inters)
overlaps = inters / uni
gt_bbox_keep_mask = overlaps > 0
gt_bbox_keep = gt_bbox[gt_bbox_keep_mask, :]
gt_bbox_keep_index = np.where(overlaps > 0)[0]
def calcoverlaps(gt_bbox_keep, bb):
overlaps = []
for index, _ in enumerate(gt_bbox_keep):
p_g = polygon_from_points(gt_bbox_keep[index])
p_d = polygon_from_points(bb)
overlap = get_intersection_over_union(p_d, p_g)
overlaps.append(overlap)
return overlaps
if len(gt_bbox_keep) > 0:
overlaps = calcoverlaps(gt_bbox_keep, bb)
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps)
jmax = gt_bbox_keep_index[jmax]
if ovmax > ovthresh:
if not res['difficult'][jmax]:
if not res['det'][jmax]:
tp[d] = 1.
res['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.
# compute precision recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = calculate_ap(rec, prec)
return rec, prec, ap
def icdar_map_eval(result, num_class):
map = 0
for i in range(num_class - 1):
rec, prec, ap = icdar_map(result, i + 1, ovthresh=0.5)
map = map + ap
map = map / (num_class - 1)
logger.info('mAP {}'.format(map))
def icdar_box_eval(result, thresh):
matched_sum = 0
num_global_care_gt = 0
num_global_care_det = 0
for res in result:
im_info = res['im_info'][0]
h = im_info[1]
w = im_info[2]
gt_boxes = res['gt_box']
pred_boxes = res['bbox']
pred_boxes = pred_boxes[np.where(pred_boxes[:, 1] > thresh)]
pred_boxes = pred_boxes[:, 2:]
pred_boxes = clip_box(pred_boxes, im_info)
is_difficult = res['is_difficult']
det_matched = 0
iou_mat = np.empty([1, 1])
gt_pols = []
det_pols = []
gt_pol_points = []
det_pol_points = []
gt_dont_care_pols_num = []
det_dont_care_pols_num = []
det_matched_nums = []
points_list = list(gt_boxes)
dony_care = is_difficult.reshape(-1)
for i, points in enumerate(points_list):
gt_pol = polygon_from_points(list(points))
gt_pols.append(gt_pol)
gt_pol_points.append(list(points))
if dony_care[i] == 1:
gt_dont_care_pols_num.append(len(gt_pols) - 1)
for i, points in enumerate(pred_boxes):
points = list(points.reshape(8).astype(np.int32))
det_pol = polygon_from_points(points)
det_pols.append(det_pol)
det_pol_points.append(points)
if len(gt_dont_care_pols_num) > 0:
for dont_care_pol in gt_dont_care_pols_num:
dont_care_pol = gt_pols[dont_care_pol]
intersected_area = get_intersection(dont_care_pol, det_pol)
pd_dimensions = det_pol.area()
precision = 0 if pd_dimensions == 0 else intersected_area / pd_dimensions
if (precision > 0.5):
det_dont_care_pols_num.append(len(det_pols) - 1)
break
if len(gt_pols) > 0 and len(det_pols) > 0:
# Calculate IoU and precision matrixs
output_shape = [len(gt_pols), len(det_pols)]
iou_mat = np.empty(output_shape)
gt_rect_mat = np.zeros(len(gt_pols), np.int8)
det_rect_mat = np.zeros(len(det_pols), np.int8)
for gt_num in range(len(gt_pols)):
for det_num in range(len(det_pols)):
p_d = gt_pols[gt_num]
p_g = det_pols[det_num]
iou_mat[gt_num, det_num] = get_intersection_over_union(p_d,
p_g)
for gt_num in range(len(gt_pols)):
for det_num in range(len(det_pols)):
if gt_rect_mat[gt_num] == 0 and det_rect_mat[
det_num] == 0 and gt_num not in gt_dont_care_pols_num and det_num not in det_dont_care_pols_num:
if iou_mat[gt_num, det_num] > 0.5:
gt_rect_mat[gt_num] = 1
det_rect_mat[det_num] = 1
det_matched += 1
det_matched_nums.append(det_num)
num_gt_care = (len(gt_pols) - len(gt_dont_care_pols_num))
num_det_care = (len(det_pols) - len(det_dont_care_pols_num))
matched_sum += det_matched
num_global_care_gt += num_gt_care
num_global_care_det += num_det_care
method_recall = 0 if num_global_care_gt == 0 else float(
matched_sum) / num_global_care_gt
method_precision = 0 if num_global_care_det == 0 else float(
matched_sum) / num_global_care_det
method_hmean = 0 if method_recall + method_precision == 0 else 2 * method_recall * method_precision / (
method_recall + method_precision)
logger.info('Recall {}'.format(method_recall))
logger.info('Precision {}'.format(method_precision))
logger.info('F1 {}'.format(method_hmean))
def icdar_eval(result):
if cfg.dataset == 'icdar2015':
icdar_box_eval(result, 0.8)
else:
icdar_map_eval(result, cfg.class_num)