-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathcheckpoint.py
189 lines (159 loc) · 6.13 KB
/
checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import errno
import os
import shutil
import time
import numpy as np
import re
import paddle.fluid as fluid
import logging
logger = logging.getLogger(__name__)
def _load_state(path):
if os.path.exists(path + '.pdopt'):
# XXX another hack to ignore the optimizer state
tmp = tempfile.mkdtemp()
dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
shutil.copy(path + '.pdparams', dst + '.pdparams')
state = fluid.io.load_program_state(dst)
shutil.rmtree(tmp)
else:
state = fluid.io.load_program_state(path)
return state
def load_params(exe, prog, path):
"""
Load model from the given path.
Args:
exe (fluid.Executor): The fluid.Executor object.
prog (fluid.Program): load weight to which Program object.
path (string): URL string or loca model path.
"""
if not os.path.exists(path):
raise ValueError("Model pretrain path {} does not "
"exists.".format(path))
logger.info('Loading parameters from {}...'.format(path))
def _if_exist(var):
param_exist = os.path.exists(os.path.join(path, var.name))
do_load = param_exist
if do_load:
logger.debug('load weight {}'.format(var.name))
return do_load
fluid.io.load_vars(exe, path, prog, predicate=_if_exist)
def save(exe, prog, path):
"""
Load model from the given path.
Args:
exe (fluid.Executor): The fluid.Executor object.
prog (fluid.Program): save weight from which Program object.
path (string): the path to save model.
"""
if os.path.isdir(path):
shutil.rmtree(path)
logger.info('Save model to {}.'.format(path))
fluid.save(prog, path)
def load_and_fusebn(exe, prog, path):
"""
Fuse params of batch norm to scale and bias.
Args:
exe (fluid.Executor): The fluid.Executor object.
prog (fluid.Program): save weight from which Program object.
path (string): the path to save model.
"""
logger.info('Load model and fuse batch norm if have from {}...'.format(
path))
if not os.path.exists(path):
raise ValueError("Model path {} does not exists.".format(path))
# Since the program uses affine-channel, there is no running mean and var
# in the program, here append running mean and var.
# NOTE, the params of batch norm should be like:
# x_scale
# x_offset
# x_mean
# x_variance
# x is any prefix
mean_variances = set()
bn_vars = []
state = None
if os.path.exists(path + '.pdparams'):
state = _load_state(path)
def check_mean_and_bias(prefix):
m = prefix + 'mean'
v = prefix + 'variance'
if state:
return v in state and m in state
else:
return (os.path.exists(os.path.join(path, m)) and
os.path.exists(os.path.join(path, v)))
has_mean_bias = True
with fluid.program_guard(prog, fluid.Program()):
for block in prog.blocks:
ops = list(block.ops)
if not has_mean_bias:
break
for op in ops:
if op.type == 'affine_channel':
# remove 'scale' as prefix
scale_name = op.input('Scale')[0] # _scale
bias_name = op.input('Bias')[0] # _offset
prefix = scale_name[:-5]
mean_name = prefix + 'mean'
variance_name = prefix + 'variance'
if not check_mean_and_bias(prefix):
has_mean_bias = False
break
bias = block.var(bias_name)
mean_vb = block.create_var(
name=mean_name,
type=bias.type,
shape=bias.shape,
dtype=bias.dtype)
variance_vb = block.create_var(
name=variance_name,
type=bias.type,
shape=bias.shape,
dtype=bias.dtype)
mean_variances.add(mean_vb)
mean_variances.add(variance_vb)
bn_vars.append(
[scale_name, bias_name, mean_name, variance_name])
if state:
fluid.io.set_program_state(prog, state)
else:
load_params(exe, prog, path)
if not has_mean_bias:
logger.warning(
"There is no paramters of batch norm in model {}. "
"Skip to fuse batch norm. And load paramters done.".format(path))
return
eps = 1e-5
for names in bn_vars:
scale_name, bias_name, mean_name, var_name = names
scale = fluid.global_scope().find_var(scale_name).get_tensor()
bias = fluid.global_scope().find_var(bias_name).get_tensor()
mean = fluid.global_scope().find_var(mean_name).get_tensor()
var = fluid.global_scope().find_var(var_name).get_tensor()
scale_arr = np.array(scale)
bias_arr = np.array(bias)
mean_arr = np.array(mean)
var_arr = np.array(var)
bn_std = np.sqrt(np.add(var_arr, eps))
new_scale = np.float32(np.divide(scale_arr, bn_std))
new_bias = bias_arr - mean_arr * new_scale
# fuse to scale and bias in affine_channel
scale.set(new_scale, exe.place)
bias.set(new_bias, exe.place)