-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathinfer.py
393 lines (362 loc) · 17.5 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import functools
import os
from PIL import Image
import paddle.fluid as fluid
import paddle
import numpy as np
import glob
from util.config import add_arguments, print_arguments
from data_reader import celeba_reader_creator, reader_creator, triplex_reader_creator
from util.utility import check_attribute_conflict, check_gpu, save_batch_image, check_version
from util import utility
import copy
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('model_net', str, 'CGAN', "The model used")
add_arg('net_G', str, "resnet_9block", "Choose the CycleGAN and Pix2pix generator's network, choose in [resnet_9block|resnet_6block|unet_128|unet_256]")
add_arg('init_model', str, None, "The init model file of directory.")
add_arg('output', str, "./infer_result", "The directory the infer result to be saved to.")
add_arg('input_style', str, "A", "The style of the input, A or B")
add_arg('norm_type', str, "batch_norm", "Which normalization to used")
add_arg('crop_type', str, None, "Which crop type to use")
add_arg('use_gpu', bool, True, "Whether to use GPU to train.")
add_arg('dropout', bool, False, "Whether to use dropout")
add_arg('g_base_dims', int, 64, "Base channels in CycleGAN generator")
add_arg('ngf', int, 64, "Base channels in SPADE generator")
add_arg('c_dim', int, 13, "the size of attrs")
add_arg('use_gru', bool, False, "Whether to use GRU")
add_arg('crop_size', int, 178, "crop size")
add_arg('image_size', int, 128, "image size")
add_arg('load_height', int, 128, "image size")
add_arg('load_width', int, 128, "image size")
add_arg('crop_height', int, 128, "height of crop size")
add_arg('crop_width', int, 128, "width of crop size")
add_arg('selected_attrs', str,
"Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young",
"the attributes we selected to change")
add_arg('n_samples', int, 16, "batch size when test")
add_arg('test_list', str, "./data/celeba/list_attr_celeba.txt", "the test list file")
add_arg('dataset_dir', str, "./data/celeba/", "the dataset directory to be infered")
add_arg('n_layers', int, 5, "default layers in generotor")
add_arg('gru_n_layers', int, 4, "default layers of GRU in generotor")
add_arg('noise_size', int, 100, "the noise dimension")
add_arg('label_nc', int, 36, "label numbers of SPADE")
add_arg('no_instance', type=bool, default=False, help="Whether to use instance label.")
# yapf: enable
def infer(args):
data_shape = [None, 3, args.image_size, args.image_size]
input = fluid.data(name='input', shape=data_shape, dtype='float32')
label_org_ = fluid.data(
name='label_org_', shape=[None, args.c_dim], dtype='float32')
label_trg_ = fluid.data(
name='label_trg_', shape=[None, args.c_dim], dtype='float32')
image_name = fluid.data(
name='image_name', shape=[None, args.n_samples], dtype='int32')
model_name = 'net_G'
if args.model_net == 'CycleGAN':
loader = fluid.io.DataLoader.from_generator(
feed_list=[input, image_name],
capacity=4, ## batch_size * 4
iterable=True,
use_double_buffer=True)
from network.CycleGAN_network import CycleGAN_model
model = CycleGAN_model()
if args.input_style == "A":
fake = model.network_G(input, name="GA", cfg=args)
elif args.input_style == "B":
fake = model.network_G(input, name="GB", cfg=args)
else:
raise "Input with style [%s] is not supported." % args.input_style
elif args.model_net == 'Pix2pix':
loader = fluid.io.DataLoader.from_generator(
feed_list=[input, image_name],
capacity=4, ## batch_size * 4
iterable=True,
use_double_buffer=True)
from network.Pix2pix_network import Pix2pix_model
model = Pix2pix_model()
fake = model.network_G(input, "generator", cfg=args)
elif args.model_net == 'StarGAN':
loader = fluid.io.DataLoader.from_generator(
feed_list=[input, label_org_, label_trg_, image_name],
capacity=32,
iterable=True,
use_double_buffer=True)
from network.StarGAN_network import StarGAN_model
model = StarGAN_model()
fake = model.network_G(input, label_trg_, name="g_main", cfg=args)
elif args.model_net == 'STGAN':
from network.STGAN_network import STGAN_model
loader = fluid.io.DataLoader.from_generator(
feed_list=[input, label_org_, label_trg_, image_name],
capacity=32,
iterable=True,
use_double_buffer=True)
model = STGAN_model()
fake, _ = model.network_G(
input,
label_org_,
label_trg_,
cfg=args,
name='generator',
is_test=True)
elif args.model_net == 'AttGAN':
from network.AttGAN_network import AttGAN_model
loader = fluid.io.DataLoader.from_generator(
feed_list=[input, label_org_, label_trg_, image_name],
capacity=32,
iterable=True,
use_double_buffer=True)
model = AttGAN_model()
fake, _ = model.network_G(
input,
label_org_,
label_trg_,
cfg=args,
name='generator',
is_test=True)
elif args.model_net == 'CGAN':
noise = fluid.data(
name='noise', shape=[None, args.noise_size], dtype='float32')
conditions = fluid.data(
name='conditions', shape=[None, 1], dtype='float32')
from network.CGAN_network import CGAN_model
model = CGAN_model(args.n_samples)
fake = model.network_G(noise, conditions, name="G")
elif args.model_net == 'DCGAN':
noise = fluid.data(
name='noise', shape=[None, args.noise_size], dtype='float32')
from network.DCGAN_network import DCGAN_model
model = DCGAN_model(args.n_samples)
fake = model.network_G(noise, name="G")
elif args.model_net == 'SPADE':
label_shape = [None, args.label_nc, args.crop_height, args.crop_width]
spade_data_shape = [None, 1, args.crop_height, args.crop_width]
from network.SPADE_network import SPADE_model
model = SPADE_model()
input_label = fluid.data(
name='input_label', shape=label_shape, dtype='float32')
input_ins = fluid.data(
name='input_ins', shape=spade_data_shape, dtype='float32')
input_ = fluid.layers.concat([input_label, input_ins], 1)
fake = model.network_G(input_, "generator", cfg=args, is_test=True)
else:
raise NotImplementedError("model_net {} is not support".format(
args.model_net))
def _compute_start_end(image_name):
image_name_start = np.array(image_name)[0].astype('int32')
image_name_end = image_name_start + args.n_samples - 1
image_name_save = str(np.array(image_name)[0].astype('int32')) + '.jpg'
print("read {}.jpg ~ {}.jpg".format(image_name_start, image_name_end))
return image_name_save
# prepare environment
place = fluid.CPUPlace()
if args.use_gpu:
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for var in fluid.default_main_program().all_parameters():
print(var.name)
print(args.init_model + '/' + model_name)
fluid.load(fluid.default_main_program(), os.path.join(args.init_model, model_name))
print('load params done')
if not os.path.exists(args.output):
os.makedirs(args.output)
attr_names = args.selected_attrs.split(',')
if args.model_net == 'AttGAN' or args.model_net == 'STGAN':
test_reader = celeba_reader_creator(
image_dir=args.dataset_dir,
list_filename=args.test_list,
args=args,
mode="VAL")
reader_test = test_reader.make_reader(return_name=True)
loader.set_batch_generator(
reader_test,
places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
for data in loader():
real_img, label_org, label_trg, image_name = data[0]['input'], data[
0]['label_org_'], data[0]['label_trg_'], data[0]['image_name']
image_name_save = _compute_start_end(image_name)
real_img_temp = save_batch_image(np.array(real_img))
images = [real_img_temp]
for i in range(args.c_dim):
label_trg_tmp = copy.deepcopy(np.array(label_trg))
for j in range(len(label_trg_tmp)):
label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i]
label_trg_tmp = check_attribute_conflict(
label_trg_tmp, attr_names[i], attr_names)
label_org_tmp = list(
map(lambda x: ((x * 2) - 1) * 0.5, np.array(label_org)))
label_trg_tmp = list(
map(lambda x: ((x * 2) - 1) * 0.5, label_trg_tmp))
if args.model_net == 'AttGAN':
for k in range(len(label_trg_tmp)):
label_trg_tmp[k][i] = label_trg_tmp[k][i] * 2.0
tensor_label_org_ = fluid.LoDTensor()
tensor_label_trg_ = fluid.LoDTensor()
tensor_label_org_.set(label_org_tmp, place)
tensor_label_trg_.set(label_trg_tmp, place)
out = exe.run(feed={
"input": real_img,
"label_org_": tensor_label_org_,
"label_trg_": tensor_label_trg_
},
fetch_list=[fake.name])
fake_temp = save_batch_image(out[0])
images.append(fake_temp)
images_concat = np.concatenate(images, 1)
if len(np.array(label_org)) > 1:
images_concat = np.concatenate(images_concat, 1)
fake_image = Image.fromarray(((images_concat + 1) * 127.5).astype(np.uint8))
fake_image.save(os.path.join(args.output, "fake_image_" + image_name_save))
elif args.model_net == 'StarGAN':
test_reader = celeba_reader_creator(
image_dir=args.dataset_dir,
list_filename=args.test_list,
args=args,
mode="VAL")
reader_test = test_reader.make_reader(return_name=True)
loader.set_batch_generator(
reader_test,
places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
for data in loader():
real_img, label_org, label_trg, image_name = data[0]['input'], data[
0]['label_org_'], data[0]['label_trg_'], data[0]['image_name']
image_name_save = _compute_start_end(image_name)
real_img_temp = save_batch_image(np.array(real_img))
images = [real_img_temp]
for i in range(args.c_dim):
label_trg_tmp = copy.deepcopy(np.array(label_org))
for j in range(len(np.array(label_org))):
label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i]
label_trg_tmp = check_attribute_conflict(
label_trg_tmp, attr_names[i], attr_names)
tensor_label_trg_ = fluid.LoDTensor()
tensor_label_trg_.set(label_trg_tmp, place)
out = exe.run(
feed={"input": real_img,
"label_trg_": tensor_label_trg_},
fetch_list=[fake.name])
fake_temp = save_batch_image(out[0])
images.append(fake_temp)
images_concat = np.concatenate(images, 1)
if len(np.array(label_org)) > 1:
images_concat = np.concatenate(images_concat, 1)
fake_image = Image.fromarray(((images_concat + 1) * 127.5).astype(np.uint8))
fake_image.save(os.path.join(args.output, "fake_image_" + image_name_save))
elif args.model_net == 'Pix2pix' or args.model_net == 'CycleGAN':
test_reader = reader_creator(
image_dir=args.dataset_dir,
list_filename=args.test_list,
shuffle=False,
batch_size=args.n_samples,
mode="VAL")
reader_test = test_reader.make_reader(args, return_name=True)
loader.set_batch_generator(
reader_test,
places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
id2name = test_reader.id2name
for data in loader():
real_img, image_name = data[0]['input'], data[0]['image_name']
image_names = []
for name in image_name:
image_names.append(id2name[np.array(name).astype('int32')[0]])
print("read: ", image_names)
fake_temp = exe.run(fetch_list=[fake.name],
feed={"input": real_img})
fake_temp = save_batch_image(fake_temp[0])
input_temp = save_batch_image(np.array(real_img))
for i, name in enumerate(image_names):
fake_image = Image.fromarray(((fake_temp[i] + 1) * 127.5).astype(np.uint8))
fake_image.save(os.path.join(args.output, "fake_" + name))
input_image = Image.fromarray(((input_temp[i] + 1) * 127.5).astype(np.uint8))
input_image.save(os.path.join(args.output, "input_" + name))
elif args.model_net == 'SPADE':
test_reader = triplex_reader_creator(
image_dir=args.dataset_dir,
list_filename=args.test_list,
shuffle=False,
batch_size=1,
mode="TEST")
id2name = test_reader.id2name
reader_test = test_reader.make_reader(args, return_name=True)
for data in zip(reader_test()):
data_A, data_B, data_C, name = data[0]
name = id2name[np.array(name).astype('int32')[0]]
print("read: ", name)
tensor_A = fluid.LoDTensor()
tensor_C = fluid.LoDTensor()
tensor_A.set(data_A, place)
tensor_C.set(data_C, place)
fake_B_temp = exe.run(
fetch_list=[fake.name],
feed={"input_label": tensor_A,
"input_ins": tensor_C})
fake_B_temp = np.squeeze(fake_B_temp[0]).transpose([1, 2, 0])
input_B_temp = np.squeeze(data_B[0]).transpose([1, 2, 0])
fakeB_image = Image.fromarray(((fake_B_temp + 1) * 127.5).astype(np.uint8))
fakeB_image.save(os.path.join(args.output, "fakeB_" + name))
real_image = Image.fromarray(((input_B_temp + 1) * 127.5).astype(np.uint8))
real_image.save(os.path.join(args.output, "real_" + name))
elif args.model_net == 'CGAN':
noise_data = np.random.uniform(
low=-1.0, high=1.0,
size=[args.n_samples, args.noise_size]).astype('float32')
label = np.random.randint(
0, 9, size=[args.n_samples, 1]).astype('float32')
noise_tensor = fluid.LoDTensor()
conditions_tensor = fluid.LoDTensor()
noise_tensor.set(noise_data, place)
conditions_tensor.set(label, place)
fake_temp = exe.run(
fetch_list=[fake.name],
feed={"noise": noise_tensor,
"conditions": conditions_tensor})[0]
fake_image = np.reshape(fake_temp, (args.n_samples, -1))
fig = utility.plot(fake_image)
plt.savefig(
os.path.join(args.output, 'fake_cgan.png'), bbox_inches='tight')
plt.close(fig)
elif args.model_net == 'DCGAN':
noise_data = np.random.uniform(
low=-1.0, high=1.0,
size=[args.n_samples, args.noise_size]).astype('float32')
noise_tensor = fluid.LoDTensor()
noise_tensor.set(noise_data, place)
fake_temp = exe.run(fetch_list=[fake.name],
feed={"noise": noise_tensor})[0]
fake_image = np.reshape(fake_temp, (args.n_samples, -1))
fig = utility.plot(fake_image)
plt.savefig(
os.path.join(args.output, 'fake_dcgan.png'), bbox_inches='tight')
plt.close(fig)
else:
raise NotImplementedError("model_net {} is not support".format(
args.model_net))
if __name__ == "__main__":
args = parser.parse_args()
print_arguments(args)
check_gpu(args.use_gpu)
check_version()
infer(args)