-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathnetwork.py
164 lines (136 loc) · 4.75 KB
/
network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
from utility import get_parent_function_name
import os
gf_dim = 64
df_dim = 64
gfc_dim = 1024 * 2
dfc_dim = 1024
img_dim = 28
c_dim = 3
y_dim = 1
output_height = 28
output_width = 28
use_cudnn = True
if 'ce_mode' in os.environ:
use_cudnn = False
def bn(x, name=None, act='relu'):
if name is None:
name = get_parent_function_name()
#return fluid.layers.leaky_relu(x)
return fluid.layers.batch_norm(
x,
param_attr=name + '1',
bias_attr=name + '2',
moving_mean_name=name + '3',
moving_variance_name=name + '4',
name=name,
act=act)
def conv(x, num_filters, name=None, act=None):
if name is None:
name = get_parent_function_name()
return fluid.nets.simple_img_conv_pool(
input=x,
filter_size=5,
num_filters=num_filters,
pool_size=2,
pool_stride=2,
param_attr=name + 'w',
bias_attr=name + 'b',
use_cudnn=use_cudnn,
act=act)
def fc(x, num_filters, name=None, act=None):
if name is None:
name = get_parent_function_name()
return fluid.layers.fc(input=x,
size=num_filters,
act=act,
param_attr=name + 'w',
bias_attr=name + 'b')
def deconv(x,
num_filters,
name=None,
filter_size=5,
stride=2,
dilation=1,
padding=2,
output_size=None,
act=None):
if name is None:
name = get_parent_function_name()
return fluid.layers.conv2d_transpose(
input=x,
param_attr=name + 'w',
bias_attr=name + 'b',
num_filters=num_filters,
output_size=output_size,
filter_size=filter_size,
stride=stride,
dilation=dilation,
padding=padding,
use_cudnn=use_cudnn,
act=act)
def conv_cond_concat(x, y):
"""Concatenate conditioning vector on feature map axis."""
ones = fluid.layers.fill_constant_batch_size_like(
x, [-1, y.shape[1], x.shape[2], x.shape[3]], "float32", 1.0)
return fluid.layers.concat([x, ones * y], 1)
def D_cond(image, y):
image = fluid.layers.reshape(x=image, shape=[-1, 1, 28, 28])
yb = fluid.layers.reshape(y, [-1, y_dim, 1, 1])
x = conv_cond_concat(image, yb)
h0 = conv(x, c_dim + y_dim, act="leaky_relu")
h0 = conv_cond_concat(h0, yb)
h1 = bn(conv(h0, df_dim + y_dim), act="leaky_relu")
h1 = fluid.layers.flatten(h1, axis=1)
h1 = fluid.layers.concat([h1, y], 1)
h2 = bn(fc(h1, dfc_dim), act='leaky_relu')
h2 = fluid.layers.concat([h2, y], 1)
h3 = fc(h2, 1, act='sigmoid')
return h3
def G_cond(z, y):
s_h, s_w = output_height, output_width
s_h2, s_h4 = int(s_h // 2), int(s_h // 4)
s_w2, s_w4 = int(s_w // 2), int(s_w // 4)
yb = fluid.layers.reshape(y, [-1, y_dim, 1, 1]) #NCHW
z = fluid.layers.concat([z, y], 1)
h0 = bn(fc(z, gfc_dim // 2), act='relu')
h0 = fluid.layers.concat([h0, y], 1)
h1 = bn(fc(h0, gf_dim * 2 * s_h4 * s_w4), act='relu')
h1 = fluid.layers.reshape(h1, [-1, gf_dim * 2, s_h4, s_w4])
h1 = conv_cond_concat(h1, yb)
h2 = bn(deconv(h1, gf_dim * 2, output_size=[s_h2, s_w2]), act='relu')
h2 = conv_cond_concat(h2, yb)
h3 = deconv(h2, 1, output_size=[s_h, s_w], act='tanh')
return fluid.layers.reshape(h3, shape=[-1, s_h * s_w])
def D(x):
x = fluid.layers.reshape(x=x, shape=[-1, 1, 28, 28])
x = conv(x, df_dim, act='leaky_relu')
x = bn(conv(x, df_dim * 2), act='leaky_relu')
x = bn(fc(x, dfc_dim), act='leaky_relu')
x = fc(x, 1, act='sigmoid')
return x
def G(x):
x = bn(fc(x, gfc_dim))
x = bn(fc(x, gf_dim * 2 * img_dim // 4 * img_dim // 4))
x = fluid.layers.reshape(x, [-1, gf_dim * 2, img_dim // 4, img_dim // 4])
x = deconv(x, gf_dim * 2, act='relu', output_size=[14, 14])
x = deconv(x, 1, filter_size=5, padding=2, act='tanh', output_size=[28, 28])
x = fluid.layers.reshape(x, shape=[-1, 28 * 28])
return x