-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathmnist_tutorial_bim.py
140 lines (120 loc) · 4.49 KB
/
mnist_tutorial_bim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
BIM tutorial on mnist using advbox tool.
BIM method iteratively take multiple small steps while adjusting the direction after each step.
It only supports non-targeted attack.
"""
import sys
sys.path.append("..")
import matplotlib.pyplot as plt
import paddle.fluid as fluid
import paddle
from advbox.adversary import Adversary
from advbox.attacks.gradient_method import BIM
from advbox.models.paddle import PaddleModel
from tutorials.mnist_model import mnist_cnn_model
def main():
"""
Advbox demo which demonstrate how to use advbox.
"""
TOTAL_NUM = 500
IMG_NAME = 'img'
LABEL_NAME = 'label'
img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32')
# gradient should flow
img.stop_gradient = False
label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
logits = mnist_cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
# use CPU
place = fluid.CPUPlace()
# use GPU
# place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
BATCH_SIZE = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.test(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
fluid.io.load_params(
exe, "./mnist/", main_program=fluid.default_main_program())
# advbox demo
m = PaddleModel(
fluid.default_main_program(),
IMG_NAME,
LABEL_NAME,
logits.name,
avg_cost.name, (-1, 1),
channel_axis=1)
attack = BIM(m)
attack_config = {"epsilons": 0.1, "steps": 100}
# use train data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in train_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
# BIM non-targeted attack
adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TRAIN_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
# use test data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in test_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
# BIM non-targeted attack
adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
print("bim attack done")
if __name__ == '__main__':
main()