-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathgenerate_aug_scene.py
330 lines (270 loc) · 13.5 KB
/
generate_aug_scene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""
Generate GT database
This code is based on https://github.com/sshaoshuai/PointRCNN/blob/master/tools/generate_aug_scene.py
"""
import os
import numpy as np
import pickle
import pts_utils
import utils.cyops.kitti_utils as kitti_utils
from utils.box_utils import boxes_iou3d
from utils import calibration as calib
from data.kitti_dataset import KittiDataset
import argparse
np.random.seed(1024)
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='generator')
parser.add_argument('--class_name', type=str, default='Car')
parser.add_argument('--data_dir', type=str, default='./data')
parser.add_argument('--save_dir', type=str, default='./data/KITTI/aug_scene/training')
parser.add_argument('--split', type=str, default='train')
parser.add_argument('--gt_database_dir', type=str, default='./data/gt_database/train_gt_database_3level_Car.pkl')
parser.add_argument('--include_similar', action='store_true', default=False)
parser.add_argument('--aug_times', type=int, default=4)
args = parser.parse_args()
PC_REDUCE_BY_RANGE = True
if args.class_name == 'Car':
PC_AREA_SCOPE = np.array([[-40, 40], [-1, 3], [0, 70.4]]) # x, y, z scope in rect camera coords
else:
PC_AREA_SCOPE = np.array([[-30, 30], [-1, 3], [0, 50]])
def log_print(info, fp=None):
print(info)
if fp is not None:
# print(info, file=fp)
fp.write(info+"\n")
def save_kitti_format(calib, bbox3d, obj_list, img_shape, save_fp):
corners3d = kitti_utils.boxes3d_to_corners3d(bbox3d)
img_boxes, _ = calib.corners3d_to_img_boxes(corners3d)
img_boxes[:, 0] = np.clip(img_boxes[:, 0], 0, img_shape[1] - 1)
img_boxes[:, 1] = np.clip(img_boxes[:, 1], 0, img_shape[0] - 1)
img_boxes[:, 2] = np.clip(img_boxes[:, 2], 0, img_shape[1] - 1)
img_boxes[:, 3] = np.clip(img_boxes[:, 3], 0, img_shape[0] - 1)
# Discard boxes that are larger than 80% of the image width OR height
img_boxes_w = img_boxes[:, 2] - img_boxes[:, 0]
img_boxes_h = img_boxes[:, 3] - img_boxes[:, 1]
box_valid_mask = np.logical_and(img_boxes_w < img_shape[1] * 0.8, img_boxes_h < img_shape[0] * 0.8)
for k in range(bbox3d.shape[0]):
if box_valid_mask[k] == 0:
continue
x, z, ry = bbox3d[k, 0], bbox3d[k, 2], bbox3d[k, 6]
beta = np.arctan2(z, x)
alpha = -np.sign(beta) * np.pi / 2 + beta + ry
save_fp.write('%s %.2f %d %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f\n' %
(args.class_name, obj_list[k].trucation, int(obj_list[k].occlusion), alpha, img_boxes[k, 0], img_boxes[k, 1],
img_boxes[k, 2], img_boxes[k, 3],
bbox3d[k, 3], bbox3d[k, 4], bbox3d[k, 5], bbox3d[k, 0], bbox3d[k, 1], bbox3d[k, 2],
bbox3d[k, 6]))
class AugSceneGenerator(KittiDataset):
def __init__(self, root_dir, gt_database=None, split='train', classes=args.class_name):
super(AugSceneGenerator, self).__init__(root_dir, split=split)
self.gt_database = None
if classes == 'Car':
self.classes = ('Background', 'Car')
elif classes == 'People':
self.classes = ('Background', 'Pedestrian', 'Cyclist')
elif classes == 'Pedestrian':
self.classes = ('Background', 'Pedestrian')
elif classes == 'Cyclist':
self.classes = ('Background', 'Cyclist')
else:
assert False, "Invalid classes: %s" % classes
self.gt_database = gt_database
def __len__(self):
raise NotImplementedError
def __getitem__(self, item):
raise NotImplementedError
def filtrate_dc_objects(self, obj_list):
valid_obj_list = []
for obj in obj_list:
if obj.cls_type in ['DontCare']:
continue
valid_obj_list.append(obj)
return valid_obj_list
def filtrate_objects(self, obj_list):
valid_obj_list = []
type_whitelist = self.classes
if args.include_similar:
type_whitelist = list(self.classes)
if 'Car' in self.classes:
type_whitelist.append('Van')
if 'Pedestrian' in self.classes or 'Cyclist' in self.classes:
type_whitelist.append('Person_sitting')
for obj in obj_list:
if obj.cls_type in type_whitelist:
valid_obj_list.append(obj)
return valid_obj_list
@staticmethod
def get_valid_flag(pts_rect, pts_img, pts_rect_depth, img_shape):
"""
Valid point should be in the image (and in the PC_AREA_SCOPE)
:param pts_rect:
:param pts_img:
:param pts_rect_depth:
:param img_shape:
:return:
"""
val_flag_1 = np.logical_and(pts_img[:, 0] >= 0, pts_img[:, 0] < img_shape[1])
val_flag_2 = np.logical_and(pts_img[:, 1] >= 0, pts_img[:, 1] < img_shape[0])
val_flag_merge = np.logical_and(val_flag_1, val_flag_2)
pts_valid_flag = np.logical_and(val_flag_merge, pts_rect_depth >= 0)
if PC_REDUCE_BY_RANGE:
x_range, y_range, z_range = PC_AREA_SCOPE
pts_x, pts_y, pts_z = pts_rect[:, 0], pts_rect[:, 1], pts_rect[:, 2]
range_flag = (pts_x >= x_range[0]) & (pts_x <= x_range[1]) \
& (pts_y >= y_range[0]) & (pts_y <= y_range[1]) \
& (pts_z >= z_range[0]) & (pts_z <= z_range[1])
pts_valid_flag = pts_valid_flag & range_flag
return pts_valid_flag
@staticmethod
def check_pc_range(xyz):
"""
:param xyz: [x, y, z]
:return:
"""
x_range, y_range, z_range = PC_AREA_SCOPE
if (x_range[0] <= xyz[0] <= x_range[1]) and (y_range[0] <= xyz[1] <= y_range[1]) and \
(z_range[0] <= xyz[2] <= z_range[1]):
return True
return False
def aug_one_scene(self, sample_id, pts_rect, pts_intensity, all_gt_boxes3d):
"""
:param pts_rect: (N, 3)
:param gt_boxes3d: (M1, 7)
:param all_gt_boxex3d: (M2, 7)
:return:
"""
assert self.gt_database is not None
extra_gt_num = np.random.randint(10, 15)
try_times = 50
cnt = 0
cur_gt_boxes3d = all_gt_boxes3d.copy()
cur_gt_boxes3d[:, 4] += 0.5
cur_gt_boxes3d[:, 5] += 0.5 # enlarge new added box to avoid too nearby boxes
extra_gt_obj_list = []
extra_gt_boxes3d_list = []
new_pts_list, new_pts_intensity_list = [], []
src_pts_flag = np.ones(pts_rect.shape[0], dtype=np.int32)
road_plane = self.get_road_plane(sample_id)
a, b, c, d = road_plane
while try_times > 0:
try_times -= 1
rand_idx = np.random.randint(0, self.gt_database.__len__() - 1)
new_gt_dict = self.gt_database[rand_idx]
new_gt_box3d = new_gt_dict['gt_box3d'].copy()
new_gt_points = new_gt_dict['points'].copy()
new_gt_intensity = new_gt_dict['intensity'].copy()
new_gt_obj = new_gt_dict['obj']
center = new_gt_box3d[0:3]
if PC_REDUCE_BY_RANGE and (self.check_pc_range(center) is False):
continue
if cnt > extra_gt_num:
break
if new_gt_points.__len__() < 5: # too few points
continue
# put it on the road plane
cur_height = (-d - a * center[0] - c * center[2]) / b
move_height = new_gt_box3d[1] - cur_height
new_gt_box3d[1] -= move_height
new_gt_points[:, 1] -= move_height
cnt += 1
iou3d = boxes_iou3d(new_gt_box3d.reshape(1, 7), cur_gt_boxes3d)
valid_flag = iou3d.max() < 1e-8
if not valid_flag:
continue
enlarged_box3d = new_gt_box3d.copy()
enlarged_box3d[3] += 2 # remove the points above and below the object
boxes_pts_mask_list = pts_utils.pts_in_boxes3d(pts_rect, enlarged_box3d.reshape(1, 7))
pt_mask_flag = (boxes_pts_mask_list[0] == 1)
src_pts_flag[pt_mask_flag] = 0 # remove the original points which are inside the new box
new_pts_list.append(new_gt_points)
new_pts_intensity_list.append(new_gt_intensity)
enlarged_box3d = new_gt_box3d.copy()
enlarged_box3d[4] += 0.5
enlarged_box3d[5] += 0.5 # enlarge new added box to avoid too nearby boxes
cur_gt_boxes3d = np.concatenate((cur_gt_boxes3d, enlarged_box3d.reshape(1, 7)), axis=0)
extra_gt_boxes3d_list.append(new_gt_box3d.reshape(1, 7))
extra_gt_obj_list.append(new_gt_obj)
if new_pts_list.__len__() == 0:
return False, pts_rect, pts_intensity, None, None
extra_gt_boxes3d = np.concatenate(extra_gt_boxes3d_list, axis=0)
# remove original points and add new points
pts_rect = pts_rect[src_pts_flag == 1]
pts_intensity = pts_intensity[src_pts_flag == 1]
new_pts_rect = np.concatenate(new_pts_list, axis=0)
new_pts_intensity = np.concatenate(new_pts_intensity_list, axis=0)
pts_rect = np.concatenate((pts_rect, new_pts_rect), axis=0)
pts_intensity = np.concatenate((pts_intensity, new_pts_intensity), axis=0)
return True, pts_rect, pts_intensity, extra_gt_boxes3d, extra_gt_obj_list
def aug_one_epoch_scene(self, base_id, data_save_dir, label_save_dir, split_list, log_fp=None):
for idx, sample_id in enumerate(self.image_idx_list):
sample_id = int(sample_id)
print('process gt sample (%s, id=%06d)' % (args.split, sample_id))
pts_lidar = self.get_lidar(sample_id)
calib = self.get_calib(sample_id)
pts_rect = calib.lidar_to_rect(pts_lidar[:, 0:3])
pts_img, pts_rect_depth = calib.rect_to_img(pts_rect)
img_shape = self.get_image_shape(sample_id)
pts_valid_flag = self.get_valid_flag(pts_rect, pts_img, pts_rect_depth, img_shape)
pts_rect = pts_rect[pts_valid_flag][:, 0:3]
pts_intensity = pts_lidar[pts_valid_flag][:, 3]
# all labels for checking overlapping
all_obj_list = self.filtrate_dc_objects(self.get_label(sample_id))
all_gt_boxes3d = np.zeros((all_obj_list.__len__(), 7), dtype=np.float32)
for k, obj in enumerate(all_obj_list):
all_gt_boxes3d[k, 0:3], all_gt_boxes3d[k, 3], all_gt_boxes3d[k, 4], all_gt_boxes3d[k, 5], \
all_gt_boxes3d[k, 6] = obj.pos, obj.h, obj.w, obj.l, obj.ry
# gt_boxes3d of current label
obj_list = self.filtrate_objects(self.get_label(sample_id))
if args.class_name != 'Car' and obj_list.__len__() == 0:
continue
# augment one scene
aug_flag, pts_rect, pts_intensity, extra_gt_boxes3d, extra_gt_obj_list = \
self.aug_one_scene(sample_id, pts_rect, pts_intensity, all_gt_boxes3d)
# save augment result to file
pts_info = np.concatenate((pts_rect, pts_intensity.reshape(-1, 1)), axis=1)
bin_file = os.path.join(data_save_dir, '%06d.bin' % (base_id + sample_id))
pts_info.astype(np.float32).tofile(bin_file)
# save filtered original gt_boxes3d
label_save_file = os.path.join(label_save_dir, '%06d.txt' % (base_id + sample_id))
with open(label_save_file, 'w') as f:
for obj in obj_list:
f.write(obj.to_kitti_format() + '\n')
if aug_flag:
# augment successfully
save_kitti_format(calib, extra_gt_boxes3d, extra_gt_obj_list, img_shape=img_shape, save_fp=f)
else:
extra_gt_boxes3d = np.zeros((0, 7), dtype=np.float32)
log_print('Save to file (new_obj: %s): %s' % (extra_gt_boxes3d.__len__(), label_save_file), fp=log_fp)
split_list.append('%06d' % (base_id + sample_id))
def generate_aug_scene(self, aug_times, log_fp=None):
data_save_dir = os.path.join(args.save_dir, 'rectified_data')
label_save_dir = os.path.join(args.save_dir, 'aug_label')
if not os.path.isdir(data_save_dir):
os.makedirs(data_save_dir)
if not os.path.isdir(label_save_dir):
os.makedirs(label_save_dir)
split_file = os.path.join(args.save_dir, '%s_aug.txt' % args.split)
split_list = self.image_idx_list[:]
for epoch in range(aug_times):
base_id = (epoch + 1) * 10000
self.aug_one_epoch_scene(base_id, data_save_dir, label_save_dir, split_list, log_fp=log_fp)
with open(split_file, 'w') as f:
for idx, sample_id in enumerate(split_list):
f.write(str(sample_id) + '\n')
log_print('Save split file to %s' % split_file, fp=log_fp)
target_dir = os.path.join(args.data_dir, 'KITTI/ImageSets/')
os.system('cp %s %s' % (split_file, target_dir))
log_print('Copy split file from %s to %s' % (split_file, target_dir), fp=log_fp)
if __name__ == '__main__':
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
info_file = os.path.join(args.save_dir, 'log_info.txt')
if args.mode == 'generator':
log_fp = open(info_file, 'w')
gt_database = pickle.load(open(args.gt_database_dir, 'rb'))
log_print('Loading gt_database(%d) from %s' % (gt_database.__len__(), args.gt_database_dir), fp=log_fp)
dataset = AugSceneGenerator(root_dir=args.data_dir, gt_database=gt_database, split=args.split)
dataset.generate_aug_scene(aug_times=args.aug_times, log_fp=log_fp)
log_fp.close()
else:
pass