-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy patheval.py
341 lines (300 loc) · 13 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
import shutil
import argparse
import logging
import multiprocessing
import numpy as np
from collections import OrderedDict
import paddle
import paddle.fluid as fluid
from models.point_rcnn import PointRCNN
from data.kitti_rcnn_reader import KittiRCNNReader
from utils.run_utils import *
from utils.config import cfg, load_config, set_config_from_list
from utils.metric_utils import calc_iou_recall, rpn_metric, rcnn_metric
logging.root.handlers = []
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)
np.random.seed(1024) # use same seed
METRIC_PROC_NUM = 4
def parse_args():
parser = argparse.ArgumentParser(
"PointRCNN semantic segmentation train script")
parser.add_argument(
'--cfg',
type=str,
default='cfgs/default.yml',
help='specify the config for training')
parser.add_argument(
'--eval_mode',
type=str,
default='rpn',
required=True,
help='specify the training mode')
parser.add_argument(
'--batch_size',
type=int,
default=1,
help='evaluation batch size, default 1')
parser.add_argument(
'--weights',
type=str,
default='checkpoints/199',
help='specify weights to be evaluated if needed')
parser.add_argument(
'--data_dir',
type=str,
default='./data',
help='KITTI dataset root directory')
parser.add_argument(
'--output_dir',
type=str,
default='output',
help='output directory')
parser.add_argument(
'--save_rpn_feature',
action='store_true',
default=False,
help='save features for separately rcnn training and evaluation')
parser.add_argument(
'--save_result',
action='store_true',
default=False,
help='save roi and refine result of evaluation')
parser.add_argument(
'--rcnn_eval_roi_dir',
type=str,
default=None,
help='specify the saved rois for rcnn evaluation when using rcnn_offline mode')
parser.add_argument(
'--rcnn_eval_feature_dir',
type=str,
default=None,
help='specify the saved features for rcnn evaluation when using rcnn_offline mode')
parser.add_argument(
'--log_interval',
type=int,
default=1,
help='mini-batch interval to log.')
parser.add_argument(
'--set',
dest='set_cfgs',
default=None,
nargs=argparse.REMAINDER,
help='set extra config keys if needed.')
args = parser.parse_args()
return args
def eval():
args = parse_args()
print_arguments(args)
# check whether the installed paddle is compiled with GPU
# PointRCNN model can only run on GPU
check_gpu(True)
load_config(args.cfg)
if args.set_cfgs is not None:
set_config_from_list(args.set_cfgs)
if not os.path.isdir(args.output_dir):
os.makedirs(args.output_dir)
if args.eval_mode == 'rpn':
cfg.RPN.ENABLED = True
cfg.RCNN.ENABLED = False
elif args.eval_mode == 'rcnn':
cfg.RCNN.ENABLED = True
cfg.RPN.ENABLED = cfg.RPN.FIXED = True
assert args.batch_size, "batch size must be 1 in rcnn evaluation"
elif args.eval_mode == 'rcnn_offline':
cfg.RCNN.ENABLED = True
cfg.RPN.ENABLED = False
assert args.batch_size, "batch size must be 1 in rcnn_offline evaluation"
else:
raise NotImplementedError("unkown eval mode: {}".format(args.eval_mode))
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
# build model
startup = fluid.Program()
eval_prog = fluid.Program()
with fluid.program_guard(eval_prog, startup):
with fluid.unique_name.guard():
eval_model = PointRCNN(cfg, args.batch_size, True, 'TEST')
eval_model.build()
eval_loader = eval_model.get_loader()
eval_feeds = eval_model.get_feeds()
eval_outputs = eval_model.get_outputs()
eval_prog = eval_prog.clone(True)
extra_keys = []
if args.eval_mode == 'rpn':
extra_keys.extend(['sample_id', 'rpn_cls_label', 'gt_boxes3d'])
if args.save_rpn_feature:
extra_keys.extend(['pts_rect', 'pts_features', 'pts_input',])
eval_keys, eval_values = parse_outputs(
eval_outputs, prog=eval_prog, extra_keys=extra_keys)
eval_compile_prog = fluid.compiler.CompiledProgram(
eval_prog).with_data_parallel()
exe.run(startup)
# load weights
if not os.path.isdir(args.weights):
assert os.path.exists("{}.pdparams".format(args.weights)), \
"Given resume weight {}.pdparams not exist.".format(args.weights)
fluid.load(eval_prog, args.weights, exe)
kitti_feature_dir = os.path.join(args.output_dir, 'features')
kitti_output_dir = os.path.join(args.output_dir, 'detections', 'data')
seg_output_dir = os.path.join(args.output_dir, 'seg_result')
if args.save_rpn_feature:
if os.path.exists(kitti_feature_dir):
shutil.rmtree(kitti_feature_dir)
os.makedirs(kitti_feature_dir)
if os.path.exists(kitti_output_dir):
shutil.rmtree(kitti_output_dir)
os.makedirs(kitti_output_dir)
if os.path.exists(seg_output_dir):
shutil.rmtree(seg_output_dir)
os.makedirs(seg_output_dir)
# must make sure these dirs existing
roi_output_dir = os.path.join('./result_dir', 'roi_result', 'data')
refine_output_dir = os.path.join('./result_dir', 'refine_result', 'data')
final_output_dir = os.path.join("./result_dir", 'final_result', 'data')
if not os.path.exists(final_output_dir):
os.makedirs(final_output_dir)
if args.save_result:
if not os.path.exists(roi_output_dir):
os.makedirs(roi_output_dir)
if not os.path.exists(refine_output_dir):
os.makedirs(refine_output_dir)
# get reader
kitti_rcnn_reader = KittiRCNNReader(data_dir=args.data_dir,
npoints=cfg.RPN.NUM_POINTS,
split=cfg.TEST.SPLIT,
mode='EVAL',
classes=cfg.CLASSES,
rcnn_eval_roi_dir=args.rcnn_eval_roi_dir,
rcnn_eval_feature_dir=args.rcnn_eval_feature_dir)
eval_reader = kitti_rcnn_reader.get_multiprocess_reader(args.batch_size, eval_feeds)
eval_loader.set_sample_list_generator(eval_reader, place)
thresh_list = [0.1, 0.3, 0.5, 0.7, 0.9]
queue = multiprocessing.Queue(128)
mgr = multiprocessing.Manager()
lock = multiprocessing.Lock()
mdict = mgr.dict()
if cfg.RPN.ENABLED:
mdict['exit_proc'] = 0
mdict['total_gt_bbox'] = 0
mdict['total_cnt'] = 0
mdict['total_rpn_iou'] = 0
for i in range(len(thresh_list)):
mdict['total_recalled_bbox_list_{}'.format(i)] = 0
p_list = []
for i in range(METRIC_PROC_NUM):
p_list.append(multiprocessing.Process(
target=rpn_metric,
args=(queue, mdict, lock, thresh_list, args.save_rpn_feature, kitti_feature_dir,
seg_output_dir, kitti_output_dir, kitti_rcnn_reader, cfg.CLASSES)))
p_list[-1].start()
if cfg.RCNN.ENABLED:
for i in range(len(thresh_list)):
mdict['total_recalled_bbox_list_{}'.format(i)] = 0
mdict['total_roi_recalled_bbox_list_{}'.format(i)] = 0
mdict['exit_proc'] = 0
mdict['total_cls_acc'] = 0
mdict['total_cls_acc_refined'] = 0
mdict['total_det_num'] = 0
mdict['total_gt_bbox'] = 0
p_list = []
for i in range(METRIC_PROC_NUM):
p_list.append(multiprocessing.Process(
target=rcnn_metric,
args=(queue, mdict, lock, thresh_list, kitti_rcnn_reader, roi_output_dir,
refine_output_dir, final_output_dir, args.save_result)
))
p_list[-1].start()
try:
eval_loader.start()
eval_iter = 0
start_time = time.time()
cur_time = time.time()
while True:
eval_outs = exe.run(eval_compile_prog, fetch_list=eval_values, return_numpy=False)
rets_dict = {k: (np.array(v), v.recursive_sequence_lengths())
for k, v in zip(eval_keys, eval_outs)}
run_time = time.time() - cur_time
cur_time = time.time()
queue.put(rets_dict)
eval_iter += 1
logger.info("[EVAL] iter {}, time: {:.2f}".format(
eval_iter, run_time))
except fluid.core.EOFException:
# terminate metric process
for i in range(METRIC_PROC_NUM):
queue.put(None)
while mdict['exit_proc'] < METRIC_PROC_NUM:
time.sleep(1)
for p in p_list:
if p.is_alive():
p.join()
end_time = time.time()
logger.info("[EVAL] total {} iter finished, average time: {:.2f}".format(
eval_iter, (end_time - start_time) / float(eval_iter)))
if cfg.RPN.ENABLED:
avg_rpn_iou = mdict['total_rpn_iou'] / max(len(kitti_rcnn_reader), 1.)
logger.info("average rpn iou: {:.3f}".format(avg_rpn_iou))
total_gt_bbox = float(max(mdict['total_gt_bbox'], 1.0))
for idx, thresh in enumerate(thresh_list):
recall = mdict['total_recalled_bbox_list_{}'.format(idx)] / total_gt_bbox
logger.info("total bbox recall(thresh={:.3f}): {} / {} = {:.3f}".format(
thresh, mdict['total_recalled_bbox_list_{}'.format(idx)], mdict['total_gt_bbox'], recall))
if cfg.RCNN.ENABLED:
cnt = float(max(eval_iter, 1.0))
avg_cls_acc = mdict['total_cls_acc'] / cnt
avg_cls_acc_refined = mdict['total_cls_acc_refined'] / cnt
avg_det_num = mdict['total_det_num'] / cnt
logger.info("avg_cls_acc: {}".format(avg_cls_acc))
logger.info("avg_cls_acc_refined: {}".format(avg_cls_acc_refined))
logger.info("avg_det_num: {}".format(avg_det_num))
total_gt_bbox = float(max(mdict['total_gt_bbox'], 1.0))
for idx, thresh in enumerate(thresh_list):
cur_roi_recall = mdict['total_roi_recalled_bbox_list_{}'.format(idx)] / total_gt_bbox
logger.info('total roi bbox recall(thresh=%.3f): %d / %d = %f' % (
thresh, mdict['total_roi_recalled_bbox_list_{}'.format(idx)], total_gt_bbox, cur_roi_recall))
for idx, thresh in enumerate(thresh_list):
cur_recall = mdict['total_recalled_bbox_list_{}'.format(idx)] / total_gt_bbox
logger.info('total bbox recall(thresh=%.2f) %d / %.2f = %.4f' % (
thresh, mdict['total_recalled_bbox_list_{}'.format(idx)], total_gt_bbox, cur_recall))
split_file = os.path.join('./data/KITTI', 'ImageSets', 'val.txt')
image_idx_list = [x.strip() for x in open(split_file).readlines()]
for k in range(image_idx_list.__len__()):
cur_file = os.path.join(final_output_dir, '%s.txt' % image_idx_list[k])
if not os.path.exists(cur_file):
with open(cur_file, 'w') as temp_f:
pass
if float(sys.version[:3]) >= 3.6:
label_dir = os.path.join('./data/KITTI/object/training', 'label_2')
split_file = os.path.join('./data/KITTI', 'ImageSets', 'val.txt')
final_output_dir = os.path.join("./result_dir", 'final_result', 'data')
name_to_class = {'Car': 0, 'Pedestrian': 1, 'Cyclist': 2}
from tools.kitti_object_eval_python.evaluate import evaluate as kitti_evaluate
ap_result_str, ap_dict = kitti_evaluate(
label_dir, final_output_dir, label_split_file=split_file,
current_class=name_to_class["Car"])
logger.info("KITTI evaluate: {}, {}".format(ap_result_str, ap_dict))
else:
logger.info("KITTI mAP only support python version >= 3.6, users can "
"run 'python3 tools/kitti_eval.py' to evaluate KITTI mAP.")
finally:
eval_loader.reset()
if __name__ == "__main__":
eval()