-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy patheval_cls.py
148 lines (131 loc) · 4.8 KB
/
eval_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import sys
import time
import shutil
import argparse
import ast
import logging
import numpy as np
import paddle.fluid as fluid
from models import *
from data.data_utils import *
from data.modelnet40_reader import ModelNet40ClsReader
from utils import *
logging.root.handlers = []
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)
np.random.seed(1024)
def parse_args():
parser = argparse.ArgumentParser("PointNet++ semantic segmentation train script")
parser.add_argument(
'--model',
type=str,
default='MSG',
help='SSG or MSG model to train, default MSG')
parser.add_argument(
'--use_gpu',
type=ast.literal_eval,
default=True,
help='default use gpu.')
parser.add_argument(
'--batch_size',
type=int,
default=1,
help='evaluation batch size, default 1')
parser.add_argument(
'--num_points',
type=int,
default=2048,
help='number of points in a sample, default: 4096')
parser.add_argument(
'--num_classes',
type=int,
default=40,
help='number of classes in dataset, default: 13')
parser.add_argument(
'--weights',
type=str,
default='checkpoints/200',
help='directory name to save train snapshoot')
parser.add_argument(
'--data_dir',
type=str,
default='dataset/ModelNet40/modelnet40_ply_hdf5_2048',
help='dataset directory')
parser.add_argument(
'--log_interval',
type=int,
default=100,
help='mini-batch interval for logging.')
args = parser.parse_args()
return args
def eval():
args = parse_args()
print_arguments(args)
# check whether the installed paddle is compiled with GPU
check_gpu(args.use_gpu)
assert args.model in ['MSG', 'SSG'], \
"--model can only be 'MSG' or 'SSG'"
# build model
startup = fluid.Program()
eval_prog = fluid.Program()
with fluid.program_guard(eval_prog, startup):
with fluid.unique_name.guard():
eval_model = PointNet2ClsMSG(args.num_classes, args.num_points) \
if args.model == 'MSG' else \
PointNet2ClsSSG(args.num_classes, args.num_points)
eval_model.build_model()
eval_feeds = eval_model.get_feeds()
eval_outputs = eval_model.get_outputs()
eval_loader = eval_model.get_loader()
eval_prog = eval_prog.clone(True)
eval_keys, eval_values = parse_outputs(eval_outputs)
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup)
if not os.path.isdir(args.weights):
assert os.path.exists("{}.pdparams".format(args.weights)), \
"Given resume weight {}.pdparams not exist.".format(args.weights)
fluid.load(eval_prog, args.weights, exe)
eval_compile_prog = fluid.compiler.CompiledProgram(eval_prog)
# get reader
modelnet_reader = ModelNet40ClsReader(args.data_dir, mode='test')
eval_reader = modelnet_reader.get_reader(args.batch_size, args.num_points)
eval_loader.set_sample_list_generator(eval_reader, place)
eval_stat = Stat()
try:
eval_loader.start()
eval_iter = 0
eval_periods = []
while True:
cur_time = time.time()
eval_outs = exe.run(eval_compile_prog, fetch_list=eval_values)
period = time.time() - cur_time
eval_periods.append(period)
eval_stat.update(eval_keys, eval_outs)
if eval_iter % args.log_interval == 0:
log_str = ""
for name, value in zip(eval_keys, eval_outs):
log_str += "{}: {:.4f}, ".format(name, np.mean(value))
logger.info("[EVAL] batch {}: {}time: {:.2f}".format(eval_iter, log_str, period))
eval_iter += 1
except fluid.core.EOFException:
logger.info("[EVAL] Eval finished, {}average time: {:.2f}".format(eval_stat.get_mean_log(), np.mean(eval_periods[1:])))
finally:
eval_loader.reset()
if __name__ == "__main__":
eval()