-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathtrain.py
201 lines (169 loc) · 6.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import math
import time
import random
import argparse
import multiprocessing
import numpy as np
import paddle
import paddle.fluid as fluid
import reader
import utils
import creator
from eval import test_process
sys.path.append('../models/')
from model_check import check_cuda
from model_check import check_version
# the function to train model
def do_train(args):
train_program = fluid.default_main_program()
startup_program = fluid.default_startup_program()
dataset = reader.Dataset(args)
with fluid.program_guard(train_program, startup_program):
train_program.random_seed = args.random_seed
startup_program.random_seed = args.random_seed
with fluid.unique_name.guard():
train_ret = creator.create_model(
args, dataset.vocab_size, dataset.num_labels, mode='train')
test_program = train_program.clone(for_test=True)
optimizer = fluid.optimizer.Adam(
learning_rate=args.base_learning_rate)
optimizer.minimize(train_ret["avg_cost"])
# init executor
if args.use_cuda:
place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
dev_count = fluid.core.get_cuda_device_count()
else:
dev_count = min(multiprocessing.cpu_count(), args.cpu_num)
if (dev_count < args.cpu_num):
print(
"WARNING: The total CPU NUM in this machine is %d, which is less than cpu_num parameter you set. "
"Change the cpu_num from %d to %d" %
(dev_count, args.cpu_num, dev_count))
os.environ['CPU_NUM'] = str(dev_count)
place = fluid.CPUPlace()
train_reader = creator.create_pyreader(
args,
file_name=args.train_data,
feed_list=train_ret['feed_list'],
place=place,
model='lac',
reader=dataset)
test_reader = creator.create_pyreader(
args,
file_name=args.test_data,
feed_list=train_ret['feed_list'],
place=place,
model='lac',
reader=dataset,
mode='test')
exe = fluid.Executor(place)
exe.run(startup_program)
if args.init_checkpoint:
utils.init_checkpoint(exe, args.init_checkpoint, train_program)
if dev_count > 1:
device = "GPU" if args.use_cuda else "CPU"
print("%d %s are used to train model" % (dev_count, device))
# multi cpu/gpu config
exec_strategy = fluid.ExecutionStrategy()
build_strategy = fluid.compiler.BuildStrategy()
compiled_prog = fluid.compiler.CompiledProgram(
train_program).with_data_parallel(
loss_name=train_ret['avg_cost'].name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
else:
compiled_prog = fluid.compiler.CompiledProgram(train_program)
# start training
num_train_examples = dataset.get_num_examples(args.train_data)
max_train_steps = args.epoch * num_train_examples // args.batch_size
print("Num train examples: %d" % num_train_examples)
print("Max train steps: %d" % max_train_steps)
ce_info = []
step = 0
for epoch_id in range(args.epoch):
ce_time = 0
for data in train_reader():
# this is for minimizing the fetching op, saving the training speed.
if step % args.print_steps == 0:
fetch_list = [
train_ret["avg_cost"], train_ret["precision"],
train_ret["recall"], train_ret["f1_score"]
]
else:
fetch_list = []
start_time = time.time()
outputs = exe.run(
compiled_prog,
fetch_list=fetch_list,
feed=data[0], )
end_time = time.time()
if step % args.print_steps == 0:
avg_cost, precision, recall, f1_score = [
np.mean(x) for x in outputs
]
print(
"[train] step = %d, loss = %.5f, P: %.5f, R: %.5f, F1: %.5f, elapsed time %.5f"
% (step, avg_cost, precision, recall, f1_score,
end_time - start_time))
if step % args.validation_steps == 0:
test_process(exe, test_program, test_reader, train_ret)
ce_time += end_time - start_time
ce_info.append([ce_time, avg_cost, precision, recall, f1_score])
# save checkpoints
if step % args.save_steps == 0 and step != 0:
save_path = os.path.join(args.model_save_dir,
"step_" + str(step))
fluid.io.save_persistables(exe, save_path, train_program)
step += 1
if args.enable_ce:
card_num = get_cards()
ce_cost = 0
ce_f1 = 0
ce_p = 0
ce_r = 0
ce_time = 0
try:
ce_time = ce_info[-2][0]
ce_cost = ce_info[-2][1]
ce_p = ce_info[-2][2]
ce_r = ce_info[-2][3]
ce_f1 = ce_info[-2][4]
except:
print("ce info error")
print("kpis\teach_step_duration_card%s\t%s" % (card_num, ce_time))
print("kpis\ttrain_cost_card%s\t%f" % (card_num, ce_cost))
print("kpis\ttrain_precision_card%s\t%f" % (card_num, ce_p))
print("kpis\ttrain_recall_card%s\t%f" % (card_num, ce_r))
print("kpis\ttrain_f1_card%s\t%f" % (card_num, ce_f1))
def get_cards():
num = 0
cards = os.environ.get('CUDA_VISIBLE_DEVICES', '')
if cards != '':
num = len(cards.split(","))
return num
if __name__ == "__main__":
# 参数控制可以根据需求使用argparse,yaml或者json
# 对NLP任务推荐使用PALM下定义的configure,可以统一argparse,yaml或者json格式的配置文件。
parser = argparse.ArgumentParser(__doc__)
utils.load_yaml(parser, 'conf/args.yaml')
args = parser.parse_args()
check_cuda(args.use_cuda)
check_version()
print(args)
do_train(args)