-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathutils.py
168 lines (141 loc) · 4.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Arguments for configuration
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import argparse
import io
import sys
import random
import numpy as np
import os
import paddle
import paddle.fluid as fluid
def str2bool(v):
"""
String to Boolean
"""
# because argparse does not support to parse "true, False" as python
# boolean directly
return v.lower() in ("true", "t", "1")
class ArgumentGroup(object):
"""
Argument Class
"""
def __init__(self, parser, title, des):
self._group = parser.add_argument_group(title=title, description=des)
def add_arg(self, name, type, default, help, **kwargs):
"""
Add argument
"""
type = str2bool if type == bool else type
self._group.add_argument(
"--" + name,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
def print_arguments(args):
"""
Print Arguments
"""
print('----------- Configuration Arguments -----------')
for arg, value in sorted(six.iteritems(vars(args))):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
def init_checkpoint(exe, init_checkpoint_path, main_program):
"""
Init CheckPoint
"""
assert os.path.exists(
init_checkpoint_path), "[%s] cann't be found." % init_checkpoint_path
def existed_persitables(var):
"""
If existed presitabels
"""
if not fluid.io.is_persistable(var):
return False
return os.path.exists(os.path.join(init_checkpoint_path, var.name))
fluid.io.load_vars(
exe,
init_checkpoint_path,
main_program=main_program,
predicate=existed_persitables)
print("Load model from {}".format(init_checkpoint_path))
def data_reader(file_path, word_dict, num_examples, phrase, epoch):
"""
Convert word sequence into slot
"""
unk_id = len(word_dict)
all_data = []
with io.open(file_path, "r", encoding='utf8') as fin:
for line in fin:
if line.startswith('text_a'):
continue
cols = line.strip().split("\t")
if len(cols) != 2:
sys.stderr.write("[NOTICE] Error Format Line!")
continue
label = int(cols[1])
wids = [
word_dict[x] if x in word_dict else unk_id
for x in cols[0].split(" ")
]
all_data.append((wids, label))
if phrase == "train":
random.shuffle(all_data)
num_examples[phrase] = len(all_data)
def reader():
"""
Reader Function
"""
for epoch_index in range(epoch):
for doc, label in all_data:
yield doc, label
return reader
def load_vocab(file_path):
"""
load the given vocabulary
"""
vocab = {}
with io.open(file_path, 'r', encoding='utf8') as f:
wid = 0
for line in f:
if line.strip() not in vocab:
vocab[line.strip()] = wid
wid += 1
vocab["<unk>"] = len(vocab)
return vocab
def init_pretraining_params(exe,
pretraining_params_path,
main_program,
use_fp16=False):
"""load params of pretrained model, NOT including moment, learning_rate"""
assert os.path.exists(pretraining_params_path
), "[%s] cann't be found." % pretraining_params_path
def _existed_params(var):
if not isinstance(var, fluid.framework.Parameter):
return False
return os.path.exists(os.path.join(pretraining_params_path, var.name))
fluid.io.load_vars(
exe,
pretraining_params_path,
main_program=main_program,
predicate=_existed_params)
print("Load pretraining parameters from {}.".format(
pretraining_params_path))