-
Notifications
You must be signed in to change notification settings - Fork 351
/
Copy pathsample_tester.py
281 lines (254 loc) · 11 KB
/
sample_tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import sys
import argparse
import logging
import struct
import six
import numpy as np
import time
import paddle
from paddle.framework import IrGraph
from paddle.framework import core
logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s')
_logger = logging.getLogger(__name__)
_logger.setLevel(logging.INFO)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=1, help='Batch size.')
parser.add_argument(
'--skip_batch_num',
type=int,
default=0,
help='Number of the first minibatches to skip in performance statistics.'
)
parser.add_argument(
'--infer_model',
type=str,
default='',
help='A path to an Inference model.')
parser.add_argument('--infer_data', type=str, default='', help='Data file.')
parser.add_argument(
'--batch_num',
type=int,
default=0,
help=
'Number of batches to process. 0 or less means whole dataset. Default: 0.'
)
parser.add_argument(
'--with_accuracy_layer',
type=bool,
default=False,
help='The model is with accuracy or without accuracy layer')
test_args, args = parser.parse_known_args(namespace=unittest)
return test_args, sys.argv[:1] + args
class SampleTester(unittest.TestCase):
def _reader_creator(self, data_file='data.bin'):
def reader():
with open(data_file, 'rb') as fp:
num = fp.read(8)
num = struct.unpack('q', num)[0]
imgs_offset = 8
img_ch = 3
img_w = 224
img_h = 224
img_pixel_size = 4
img_size = img_ch * img_h * img_w * img_pixel_size
label_size = 8
labels_offset = imgs_offset + num * img_size
step = 0
while step < num:
fp.seek(imgs_offset + img_size * step)
img = fp.read(img_size)
img = struct.unpack_from('{}f'.format(
img_ch * img_w * img_h), img)
img = np.array(img)
img.shape = (img_ch, img_w, img_h)
fp.seek(labels_offset + label_size * step)
label = fp.read(label_size)
label = struct.unpack('q', label)[0]
yield img, int(label)
step += 1
return reader
def _get_batch_accuracy(self, batch_output=None, labels=None):
total = 0
correct = 0
correct_5 = 0
for n, result in enumerate(batch_output):
index = result.argsort()
top_1_index = index[-1]
top_5_index = index[-5:]
total += 1
if top_1_index == labels[n]:
correct += 1
if labels[n] in top_5_index:
correct_5 += 1
acc1 = float(correct) / float(total)
acc5 = float(correct_5) / float(total)
return acc1, acc5
def _prepare_for_fp32_mkldnn(self, graph):
ops = graph.all_op_nodes()
for op_node in ops:
name = op_node.name()
if name in ['depthwise_conv2d']:
input_var_node = graph._find_node_by_name(
op_node.inputs, op_node.input("Input")[0])
weight_var_node = graph._find_node_by_name(
op_node.inputs, op_node.input("Filter")[0])
output_var_node = graph._find_node_by_name(
graph.all_var_nodes(), op_node.output("Output")[0])
attrs = {
name: op_node.op().attr(name)
for name in op_node.op().attr_names()
}
conv_op_node = graph.create_op_node(
op_type='conv2d',
attrs=attrs,
inputs={'Input': input_var_node,
'Filter': weight_var_node},
outputs={'Output': output_var_node})
graph.link_to(input_var_node, conv_op_node)
graph.link_to(weight_var_node, conv_op_node)
graph.link_to(conv_op_node, output_var_node)
graph.safe_remove_nodes(op_node)
return graph
def _predict(self,
test_reader=None,
model_path=None,
with_accuracy_layer=False,
batch_size=1,
batch_num=1,
skip_batch_num=0):
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
inference_scope = paddle.static.Executor.global_scope()
with paddle.static.scope_guard(inference_scope):
if os.path.exists(os.path.join(model_path, '__model__')):
[inference_program, feed_target_names,
fetch_targets] = paddle.static.load_inference_model(
model_path, exe)
else:
[inference_program, feed_target_names,
fetch_targets] = paddle.static.load_inference_model(
model_path, exe, 'model', 'params')
graph = IrGraph(core.Graph(inference_program.desc), for_test=True)
graph = self._prepare_for_fp32_mkldnn(graph)
inference_program = graph.to_program()
dshape = [3, 224, 224]
outputs = []
infer_accs1 = []
infer_accs5 = []
batch_acc1 = 0.0
batch_acc5 = 0.0
fpses = []
batch_times = []
batch_time = 0.0
total_samples = 0
iters = 0
infer_start_time = time.time()
for data in test_reader():
if batch_num > 0 and iters >= batch_num:
break
if iters == skip_batch_num:
total_samples = 0
infer_start_time = time.time()
if six.PY2:
images = map(lambda x: x[0].reshape(dshape), data)
if six.PY3:
images = list(map(lambda x: x[0].reshape(dshape), data))
images = np.array(images).astype('float32')
labels = np.array([x[1] for x in data]).astype('int64')
if (with_accuracy_layer == False):
# models that do not have accuracy measuring layers
start = time.time()
out = exe.run(
inference_program,
feed={feed_target_names[0]: images},
fetch_list=fetch_targets)
batch_time = (time.time() - start) * 1000 # in miliseconds
outputs.append(out[0])
# Calculate accuracy result
batch_acc1, batch_acc5 = self._get_batch_accuracy(
out[0], labels)
else:
# models have accuracy measuring layers
labels = labels.reshape([-1, 1])
start = time.time()
out = exe.run(
inference_program,
feed={
feed_target_names[0]: images,
feed_target_names[1]: labels
},
fetch_list=fetch_targets)
batch_time = (time.time() - start) * 1000 # in miliseconds
batch_acc1, batch_acc5 = out[1][0], out[2][0]
outputs.append(batch_acc1)
infer_accs1.append(batch_acc1)
infer_accs5.append(batch_acc5)
samples = len(data)
total_samples += samples
batch_times.append(batch_time)
fps = samples / batch_time * 1000
fpses.append(fps)
iters += 1
appx = ' (warm-up)' if iters <= skip_batch_num else ''
_logger.info('batch {0}{5}, acc1: {1:.4f}, acc5: {2:.4f}, '
'latency: {3:.4f} ms, fps: {4:.2f}'.format(
iters, batch_acc1, batch_acc5,
batch_time / batch_size, fps, appx))
# Postprocess benchmark data
batch_latencies = batch_times[skip_batch_num:]
batch_latency_avg = np.average(batch_latencies)
latency_avg = batch_latency_avg / batch_size
fpses = fpses[skip_batch_num:]
fps_avg = np.average(fpses)
infer_total_time = time.time() - infer_start_time
acc1_avg = np.mean(infer_accs1)
acc5_avg = np.mean(infer_accs5)
_logger.info(
'Total inference run time: {:.2f} s'.format(infer_total_time))
return outputs, acc1_avg, acc5_avg, fps_avg, latency_avg
def test_graph_transformation(self):
if not paddle.framework.core.is_compiled_with_mkldnn():
return
infer_model_path = test_case_args.infer_model
assert infer_model_path, 'The model path cannot be empty. Please, use the --infer_model option.'
data_path = test_case_args.infer_data
assert data_path, 'The dataset path cannot be empty. Please, use the --infer_data option.'
batch_size = test_case_args.batch_size
batch_num = test_case_args.batch_num
skip_batch_num = test_case_args.skip_batch_num
with_accuracy_layer = test_case_args.with_accuracy_layer
_logger.info('Inference model: {0}'.format(infer_model_path))
_logger.info('Dataset: {0}'.format(data_path))
_logger.info('Batch size: {0}'.format(batch_size))
_logger.info('Batch number: {0}'.format(batch_num))
_logger.info('--- Inference prediction start ---')
val_reader = paddle.batch(
self._reader_creator(data_path), batch_size=batch_size)
fp32_output, fp32_acc1, fp32_acc5, fp32_fps, fp32_lat = self._predict(
val_reader, infer_model_path, with_accuracy_layer, batch_size,
batch_num, skip_batch_num)
_logger.info(
'Inference: avg top1 accuracy: {0:.4f}, avg top5 accuracy: {1:.4f}'.
format(fp32_acc1, fp32_acc5))
_logger.info('Inference: avg fps: {0:.2f}, avg latency: {1:.4f} ms'.
format(fp32_fps, fp32_lat))
if __name__ == '__main__':
global test_case_args
test_case_args, remaining_args = parse_args()
unittest.main(argv=remaining_args)