-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathcheck.py
639 lines (560 loc) · 23.2 KB
/
check.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
# coding: utf8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import os
import sys
import pprint
import argparse
import cv2
from tqdm import tqdm
import imghdr
import logging
from utils.config import cfg
from reader import pil_imread
def init_global_variable():
"""
初始化全局变量
"""
global png_format_right_num # 格式正确的标注图数量
global png_format_wrong_num # 格式错误的标注图数量
global total_grt_classes # 总的标注类别
global total_num_of_each_class # 每个类别总的像素数
global shape_unequal_image # 图片和标注shape不一致列表
global png_format_wrong_image # 标注格式错误列表
global max_width # 图片最长宽
global max_height # 图片最长高
global min_aspectratio # 图片最小宽高比
global max_aspectratio # 图片最大宽高比
global img_dim # 图片的通道数
global list_wrong # 文件名格式错误列表
global imread_failed # 图片读取失败列表, 二元列表
global label_wrong # 标注图片出错列表
global label_gray_wrong # 标注图非灰度图列表
png_format_right_num = 0
png_format_wrong_num = 0
total_grt_classes = []
total_num_of_each_class = []
shape_unequal_image = []
png_format_wrong_image = []
max_width = 0
max_height = 0
min_aspectratio = sys.float_info.max
max_aspectratio = 0
img_dim = []
list_wrong = []
imread_failed = []
label_wrong = []
label_gray_wrong = []
def parse_args():
parser = argparse.ArgumentParser(description='PaddleSeg check')
parser.add_argument(
'--cfg',
dest='cfg_file',
help='Config file for training (and optionally testing)',
default=None,
type=str)
return parser.parse_args()
def error_print(str):
return "".join(["\nNOT PASS ", str])
def correct_print(str):
return "".join(["\nPASS ", str])
def cv2_imread(file_path, flag=cv2.IMREAD_COLOR):
"""
解决 cv2.imread 在window平台打开中文路径的问题.
"""
return cv2.imdecode(np.fromfile(file_path, dtype=np.uint8), flag)
def get_image_max_height_width(img):
"""获取图片最大宽和高"""
global max_width, max_height
img_shape = img.shape
height, width = img_shape[0], img_shape[1]
max_height = max(height, max_height)
max_width = max(width, max_width)
def get_image_min_max_aspectratio(img):
"""计算图片最大宽高比"""
global min_aspectratio, max_aspectratio
img_shape = img.shape
height, width = img_shape[0], img_shape[1]
min_aspectratio = min(width / height, min_aspectratio)
max_aspectratio = max(width / height, max_aspectratio)
return min_aspectratio, max_aspectratio
def get_image_dim(img):
"""获取图像的通道数"""
img_shape = img.shape
if img_shape[-1] not in img_dim:
img_dim.append(img_shape[-1])
def is_label_gray(grt):
"""判断标签是否为灰度图"""
grt_shape = grt.shape
if len(grt_shape) == 2:
return True
else:
return False
def image_label_shape_check(img, grt):
"""
验证图像和标注的大小是否匹配
"""
flag = True
img_height = img.shape[0]
img_width = img.shape[1]
grt_height = grt.shape[0]
grt_width = grt.shape[1]
if img_height != grt_height or img_width != grt_width:
flag = False
return flag
def ground_truth_check(grt, grt_path):
"""
验证标注图像的格式
统计标注图类别和像素数
params:
grt: 标注图
grt_path: 标注图路径
return:
png_format: 返回是否是png格式图片
unique: 返回标注类别
counts: 返回标注的像素数
"""
if imghdr.what(grt_path) == "png":
png_format = True
else:
png_format = False
unique, counts = np.unique(grt, return_counts=True)
return png_format, unique, counts
def sum_gt_check(png_format, grt_classes, num_of_each_class):
"""
统计所有标注图上的格式、类别和每个类别的像素数
params:
png_format: 是否是png格式图片
grt_classes: 标注类别
num_of_each_class: 各个类别的像素数目
"""
is_label_correct = True
global png_format_right_num, png_format_wrong_num, total_grt_classes, total_num_of_each_class
if png_format:
png_format_right_num += 1
else:
png_format_wrong_num += 1
if cfg.DATASET.IGNORE_INDEX in grt_classes:
grt_classes2 = np.delete(
grt_classes, np.where(grt_classes == cfg.DATASET.IGNORE_INDEX))
else:
grt_classes2 = grt_classes
if min(grt_classes2) < 0 or max(grt_classes2) > cfg.DATASET.NUM_CLASSES - 1:
is_label_correct = False
add_class = []
add_num = []
for i in range(len(grt_classes)):
gi = grt_classes[i]
if gi in total_grt_classes:
j = total_grt_classes.index(gi)
total_num_of_each_class[j] += num_of_each_class[i]
else:
add_class.append(gi)
add_num.append(num_of_each_class[i])
total_num_of_each_class += add_num
total_grt_classes += add_class
return is_label_correct
def gt_check():
"""
对标注图像进行校验,输出校验结果
"""
if png_format_wrong_num == 0:
if png_format_right_num:
logger.info(correct_print("label format check"))
else:
logger.info(error_print("label format check"))
logger.info("No label image to check")
return
else:
logger.info(error_print("label format check"))
logger.info(
"total {} label images are png format, {} label images are not png "
"format".format(png_format_right_num, png_format_wrong_num))
if len(png_format_wrong_image) > 0:
for i in png_format_wrong_image:
logger.debug(i)
total_ratio = total_num_of_each_class / sum(total_num_of_each_class)
total_ratio = np.around(total_ratio, decimals=4)
total_nc = sorted(
zip(total_grt_classes, total_num_of_each_class, total_ratio))
logger.info(
"\nDoing label pixel statistics:\n"
"(label class, total pixel number, percentage) = {} ".format(total_nc))
if len(label_wrong) == 0 and not total_nc[0][0]:
logger.info(correct_print("label class check!"))
else:
logger.info(error_print("label class check!"))
if total_nc[0][0]:
logger.info("Warning: label classes should start from 0")
if len(label_wrong) > 0:
logger.info(
"fatal error: label class is out of range [0, {}]".format(
cfg.DATASET.NUM_CLASSES - 1))
for i in label_wrong:
logger.debug(i)
def eval_crop_size_check(max_height, max_width, min_aspectratio,
max_aspectratio):
"""
判断eval_crop_siz与验证集及测试集的max_height, max_width的关系
param
max_height: 数据集的最大高
max_width: 数据集的最大宽
"""
if cfg.AUG.AUG_METHOD == "stepscaling":
if max_width <= cfg.EVAL_CROP_SIZE[
0] and max_height <= cfg.EVAL_CROP_SIZE[1]:
logger.info(correct_print("EVAL_CROP_SIZE check"))
logger.info(
"satisfy current EVAL_CROP_SIZE: ({},{}) >= max width and max height of images: ({},{})"
.format(cfg.EVAL_CROP_SIZE[0], cfg.EVAL_CROP_SIZE[1], max_width,
max_height))
else:
logger.info(error_print("EVAL_CROP_SIZE check"))
if max_width > cfg.EVAL_CROP_SIZE[0]:
logger.info(
"EVAL_CROP_SIZE[0]: {} should >= max width of images {}!".
format(cfg.EVAL_CROP_SIZE[0], max_width))
if max_height > cfg.EVAL_CROP_SIZE[1]:
logger.info(
"EVAL_CROP_SIZE[1]: {} should >= max height of images {}!".
format(cfg.EVAL_CROP_SIZE[1], max_height))
elif cfg.AUG.AUG_METHOD == "rangescaling":
if min_aspectratio <= 1 and max_aspectratio >= 1:
if cfg.EVAL_CROP_SIZE[0] >= cfg.AUG.INF_RESIZE_VALUE \
and cfg.EVAL_CROP_SIZE[1] >= cfg.AUG.INF_RESIZE_VALUE:
logger.info(correct_print("EVAL_CROP_SIZE check"))
logger.info(
"satisfy current EVAL_CROP_SIZE: ({},{}) >= ({},{}) ".
format(cfg.EVAL_CROP_SIZE[0], cfg.EVAL_CROP_SIZE[1],
cfg.AUG.INF_RESIZE_VALUE, cfg.AUG.INF_RESIZE_VALUE))
else:
logger.info(error_print("EVAL_CROP_SIZE check"))
logger.info(
"EVAL_CROP_SIZE must >= img size({},{}), current EVAL_CROP_SIZE is ({},{})"
.format(cfg.AUG.INF_RESIZE_VALUE, cfg.AUG.INF_RESIZE_VALUE,
cfg.EVAL_CROP_SIZE[0], cfg.EVAL_CROP_SIZE[1]))
elif min_aspectratio > 1:
max_height_rangscaling = cfg.AUG.INF_RESIZE_VALUE / min_aspectratio
max_height_rangscaling = round(max_height_rangscaling)
if cfg.EVAL_CROP_SIZE[
0] >= cfg.AUG.INF_RESIZE_VALUE and cfg.EVAL_CROP_SIZE[
1] >= max_height_rangscaling:
logger.info(correct_print("EVAL_CROP_SIZE check"))
logger.info(
"satisfy current EVAL_CROP_SIZE: ({},{}) >= ({},{}) ".
format(cfg.EVAL_CROP_SIZE[0], cfg.EVAL_CROP_SIZE[1],
cfg.AUG.INF_RESIZE_VALUE, max_height_rangscaling))
else:
logger.info(error_print("EVAL_CROP_SIZE check"))
logger.info(
"EVAL_CROP_SIZE must >= img size({},{}), current EVAL_CROP_SIZE is ({},{})"
.format(cfg.AUG.INF_RESIZE_VALUE, max_height_rangscaling,
cfg.EVAL_CROP_SIZE[0], cfg.EVAL_CROP_SIZE[1]))
elif max_aspectratio < 1:
max_width_rangscaling = cfg.AUG.INF_RESIZE_VALUE * max_aspectratio
max_width_rangscaling = round(max_width_rangscaling)
if cfg.EVAL_CROP_SIZE[
0] >= max_width_rangscaling and cfg.EVAL_CROP_SIZE[
1] >= cfg.AUG.INF_RESIZE_VALUE:
logger.info(correct_print("EVAL_CROP_SIZE check"))
logger.info(
"satisfy current EVAL_CROP_SIZE: ({},{}) >= ({},{}) ".
format(cfg.EVAL_CROP_SIZE[0], cfg.EVAL_CROP_SIZE[1],
max_height_rangscaling, cfg.AUG.INF_RESIZE_VALUE))
else:
logger.info(error_print("EVAL_CROP_SIZE check"))
logger.info(
"EVAL_CROP_SIZE must >= img size({},{}), current EVAL_CROP_SIZE is ({},{})"
.format(max_width_rangscaling, cfg.AUG.INF_RESIZE_VALUE,
cfg.EVAL_CROP_SIZE[0], cfg.EVAL_CROP_SIZE[1]))
elif cfg.AUG.AUG_METHOD == "unpadding":
if len(cfg.AUG.FIX_RESIZE_SIZE) != 2:
logger.info(error_print("EVAL_CROP_SIZE check"))
logger.info(
"you set AUG.AUG_METHOD = 'unpadding', but AUG.FIX_RESIZE_SIZE is wrong. "
"AUG.FIX_RESIZE_SIZE should be a tuple of length 2")
elif cfg.EVAL_CROP_SIZE[0] >= cfg.AUG.FIX_RESIZE_SIZE[0] \
and cfg.EVAL_CROP_SIZE[1] >= cfg.AUG.FIX_RESIZE_SIZE[1]:
logger.info(correct_print("EVAL_CROP_SIZE check"))
logger.info(
"satisfy current EVAL_CROP_SIZE: ({},{}) >= AUG.FIX_RESIZE_SIZE: ({},{}) "
.format(cfg.EVAL_CROP_SIZE[0], cfg.EVAL_CROP_SIZE[1],
cfg.AUG.FIX_RESIZE_SIZE[0], cfg.AUG.FIX_RESIZE_SIZE[1]))
else:
logger.info(error_print("EVAL_CROP_SIZE check"))
logger.info(
"EVAL_CROP_SIZE: ({},{}) must >= AUG.FIX_RESIZE_SIZE: ({},{})".
format(cfg.EVAL_CROP_SIZE[0], cfg.EVAL_CROP_SIZE[1],
cfg.AUG.FIX_RESIZE_SIZE[0], cfg.AUG.FIX_RESIZE_SIZE[1]))
else:
logger.info(
"\nERROR! cfg.AUG.AUG_METHOD setting wrong, it should be one of "
"[unpadding, stepscaling, rangescaling]")
def inf_resize_value_check():
if cfg.AUG.AUG_METHOD == "rangescaling":
if cfg.AUG.INF_RESIZE_VALUE < cfg.AUG.MIN_RESIZE_VALUE or \
cfg.AUG.INF_RESIZE_VALUE > cfg.AUG.MIN_RESIZE_VALUE:
logger.info(
"\nWARNING! you set AUG.AUG_METHOD = 'rangescaling'"
"AUG.INF_RESIZE_VALUE: {} not in [AUG.MIN_RESIZE_VALUE, AUG.MAX_RESIZE_VALUE]: "
"[{}, {}].".format(cfg.AUG.INF_RESIZE_VALUE,
cfg.AUG.MIN_RESIZE_VALUE,
cfg.AUG.MAX_RESIZE_VALUE))
def image_type_check(img_dim):
"""
验证图像的格式与DATASET.IMAGE_TYPE是否一致
param
img_dim: 图像包含的通道数
return
"""
if (1 in img_dim or 3 in img_dim) and cfg.DATASET.IMAGE_TYPE == 'rgba':
logger.info(error_print("DATASET.IMAGE_TYPE check"))
logger.info("DATASET.IMAGE_TYPE is {} but the type of image has "
"gray or rgb\n".format(cfg.DATASET.IMAGE_TYPE))
elif (1 not in img_dim and 3 not in img_dim
and 4 in img_dim) and cfg.DATASET.IMAGE_TYPE == 'rgb':
logger.info(correct_print("DATASET.IMAGE_TYPE check"))
logger.info(
"\nWARNING: DATASET.IMAGE_TYPE is {} but the type of all image is rgba"
.format(cfg.DATASET.IMAGE_TYPE))
else:
logger.info(correct_print("DATASET.IMAGE_TYPE check"))
def shape_check():
"""输出shape校验结果"""
if len(shape_unequal_image) == 0:
logger.info(correct_print("shape check"))
logger.info("All images are the same shape as the labels")
else:
logger.info(error_print("shape check"))
logger.info(
"Some images are not the same shape as the labels as follow: ")
for i in shape_unequal_image:
logger.debug(i)
def file_list_check(list_name):
"""检查分割符是否复合要求"""
if len(list_wrong) == 0:
logger.info(
correct_print(
list_name.split(os.sep)[-1] + " DATASET.SEPARATOR check"))
else:
logger.info(
error_print(
list_name.split(os.sep)[-1] + " DATASET.SEPARATOR check"))
logger.info("The following list is not separated by {}".format(
cfg.DATASET.SEPARATOR))
for i in list_wrong:
logger.debug(i)
def imread_check():
if len(imread_failed) == 0:
logger.info(correct_print("dataset reading check"))
logger.info("All images can be read successfully")
else:
logger.info(error_print("dataset reading check"))
logger.info("Failed to read {} images".format(len(imread_failed)))
for i in imread_failed:
logger.debug(i)
def label_gray_check():
if len(label_gray_wrong) == 0:
logger.info(correct_print("label gray check"))
logger.info("All label images are gray")
else:
logger.info(error_print("label gray check"))
logger.info(
"{} label images are not gray\nLabel pixel statistics may be insignificant"
.format(len(label_gray_wrong)))
for i in label_gray_wrong:
logger.debug(i)
def max_img_size_statistics():
logger.info("\nDoing max image size statistics:")
logger.info("max width and max height of images are ({},{})".format(
max_width, max_height))
def num_classes_loss_matching_check():
loss_type = cfg.SOLVER.LOSS
num_classes = cfg.DATASET.NUM_CLASSES
if num_classes > 2 and (("dice_loss" in loss_type) or ("bce_loss" in loss_type)):
logger.info(error_print("loss check."
" Dice loss and bce loss is only applicable to binary classfication"))
else:
logger.info(correct_print("loss check"))
def check_train_dataset():
list_file = cfg.DATASET.TRAIN_FILE_LIST
logger.info("-----------------------------\n1. Check train dataset...")
with open(list_file, 'r') as fid:
lines = fid.readlines()
for line in tqdm(lines):
line = line.strip()
parts = line.split(cfg.DATASET.SEPARATOR)
if len(parts) != 2:
list_wrong.append(line)
continue
img_name, grt_name = parts[0], parts[1]
img_path = os.path.join(cfg.DATASET.DATA_DIR, img_name)
grt_path = os.path.join(cfg.DATASET.DATA_DIR, grt_name)
try:
img = cv2_imread(img_path, cv2.IMREAD_UNCHANGED)
grt = pil_imread(grt_path)
except Exception as e:
imread_failed.append((line, str(e)))
continue
is_gray = is_label_gray(grt)
if not is_gray:
label_gray_wrong.append(line)
grt = cv2.cvtColor(grt, cv2.COLOR_BGR2GRAY)
get_image_max_height_width(img)
get_image_dim(img)
is_equal_img_grt_shape = image_label_shape_check(img, grt)
if not is_equal_img_grt_shape:
shape_unequal_image.append(line)
png_format, grt_classes, num_of_each_class = ground_truth_check(
grt, grt_path)
if not png_format:
png_format_wrong_image.append(line)
is_label_correct = sum_gt_check(png_format, grt_classes,
num_of_each_class)
if not is_label_correct:
label_wrong.append(line)
file_list_check(list_file)
imread_check()
label_gray_check()
gt_check()
image_type_check(img_dim)
max_img_size_statistics()
shape_check()
num_classes_loss_matching_check()
def check_val_dataset():
list_file = cfg.DATASET.VAL_FILE_LIST
logger.info("\n-----------------------------\n2. Check val dataset...")
with open(list_file) as fid:
lines = fid.readlines()
for line in tqdm(lines):
line = line.strip()
parts = line.split(cfg.DATASET.SEPARATOR)
if len(parts) != 2:
list_wrong.append(line)
continue
img_name, grt_name = parts[0], parts[1]
img_path = os.path.join(cfg.DATASET.DATA_DIR, img_name)
grt_path = os.path.join(cfg.DATASET.DATA_DIR, grt_name)
try:
img = cv2_imread(img_path, cv2.IMREAD_UNCHANGED)
grt = pil_imread(grt_path)
except Exception as e:
imread_failed.append((line, str(e)))
continue
is_gray = is_label_gray(grt)
if not is_gray:
label_gray_wrong.append(line)
grt = cv2.cvtColor(grt, cv2.COLOR_BGR2GRAY)
get_image_max_height_width(img)
get_image_min_max_aspectratio(img)
get_image_dim(img)
is_equal_img_grt_shape = image_label_shape_check(img, grt)
if not is_equal_img_grt_shape:
shape_unequal_image.append(line)
png_format, grt_classes, num_of_each_class = ground_truth_check(
grt, grt_path)
if not png_format:
png_format_wrong_image.append(line)
is_label_correct = sum_gt_check(png_format, grt_classes,
num_of_each_class)
if not is_label_correct:
label_wrong.append(line)
file_list_check(list_file)
imread_check()
label_gray_check()
gt_check()
image_type_check(img_dim)
max_img_size_statistics()
shape_check()
eval_crop_size_check(max_height, max_width, min_aspectratio,
max_aspectratio)
def check_test_dataset():
list_file = cfg.DATASET.TEST_FILE_LIST
has_label = False
with open(list_file) as fid:
logger.info("\n-----------------------------\n3. Check test dataset...")
lines = fid.readlines()
for line in tqdm(lines):
line = line.strip()
parts = line.split(cfg.DATASET.SEPARATOR)
if len(parts) == 1:
img_name = parts
img_path = os.path.join(cfg.DATASET.DATA_DIR, img_name[0])
try:
img = cv2_imread(img_path, cv2.IMREAD_UNCHANGED)
except Exception as e:
imread_failed.append((line, str(e)))
continue
elif len(parts) == 2:
has_label = True
img_name, grt_name = parts[0], parts[1]
img_path = os.path.join(cfg.DATASET.DATA_DIR, img_name)
grt_path = os.path.join(cfg.DATASET.DATA_DIR, grt_name)
try:
img = cv2_imread(img_path, cv2.IMREAD_UNCHANGED)
grt = pil_imread(grt_path)
except Exception as e:
imread_failed.append((line, str(e)))
continue
is_gray = is_label_gray(grt)
if not is_gray:
label_gray_wrong.append(line)
grt = cv2.cvtColor(grt, cv2.COLOR_BGR2GRAY)
is_equal_img_grt_shape = image_label_shape_check(img, grt)
if not is_equal_img_grt_shape:
shape_unequal_image.append(line)
png_format, grt_classes, num_of_each_class = ground_truth_check(
grt, grt_path)
if not png_format:
png_format_wrong_image.append(line)
is_label_correct = sum_gt_check(png_format, grt_classes,
num_of_each_class)
if not is_label_correct:
label_wrong.append(line)
else:
list_wrong.append(lines)
continue
get_image_max_height_width(img)
get_image_min_max_aspectratio(img)
get_image_dim(img)
file_list_check(list_file)
imread_check()
if has_label:
label_gray_check()
if has_label:
gt_check()
image_type_check(img_dim)
max_img_size_statistics()
if has_label:
shape_check()
eval_crop_size_check(max_height, max_width, min_aspectratio,
max_aspectratio)
def main(args):
if args.cfg_file is not None:
cfg.update_from_file(args.cfg_file)
cfg.check_and_infer()
logger.info(pprint.pformat(cfg))
init_global_variable()
check_train_dataset()
init_global_variable()
check_val_dataset()
init_global_variable()
check_test_dataset()
inf_resize_value_check()
print("\nDetailed error information can be viewed in detail.log file.")
if __name__ == "__main__":
args = parse_args()
logger = logging.getLogger()
logger.setLevel('DEBUG')
BASIC_FORMAT = "%(message)s"
formatter = logging.Formatter(BASIC_FORMAT)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
sh.setLevel('INFO')
th = logging.FileHandler('detail.log', 'w')
th.setFormatter(formatter)
logger.addHandler(sh)
logger.addHandler(th)
main(args)