-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathlanenet_postprocess.py
376 lines (304 loc) · 13 KB
/
lanenet_postprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# this code heavily base on https://github.com/MaybeShewill-CV/lanenet-lane-detection/blob/master/lanenet_model/lanenet_postprocess.py
"""
LaneNet model post process
"""
import os.path as ops
import math
import cv2
import time
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
def _morphological_process(image, kernel_size=5):
"""
morphological process to fill the hole in the binary segmentation result
:param image:
:param kernel_size:
:return:
"""
if len(image.shape) == 3:
raise ValueError('Binary segmentation result image should be a single channel image')
if image.dtype is not np.uint8:
image = np.array(image, np.uint8)
kernel = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(kernel_size, kernel_size))
# close operation fille hole
closing = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel, iterations=1)
return closing
def _connect_components_analysis(image):
"""
connect components analysis to remove the small components
:param image:
:return:
"""
if len(image.shape) == 3:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray_image = image
return cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S)
class _LaneFeat(object):
"""
"""
def __init__(self, feat, coord, class_id=-1):
"""
lane feat object
:param feat: lane embeddng feats [feature_1, feature_2, ...]
:param coord: lane coordinates [x, y]
:param class_id: lane class id
"""
self._feat = feat
self._coord = coord
self._class_id = class_id
@property
def feat(self):
return self._feat
@feat.setter
def feat(self, value):
if not isinstance(value, np.ndarray):
value = np.array(value, dtype=np.float64)
if value.dtype != np.float32:
value = np.array(value, dtype=np.float64)
self._feat = value
@property
def coord(self):
return self._coord
@coord.setter
def coord(self, value):
if not isinstance(value, np.ndarray):
value = np.array(value)
if value.dtype != np.int32:
value = np.array(value, dtype=np.int32)
self._coord = value
@property
def class_id(self):
return self._class_id
@class_id.setter
def class_id(self, value):
if not isinstance(value, np.int64):
raise ValueError('Class id must be integer')
self._class_id = value
class _LaneNetCluster(object):
"""
Instance segmentation result cluster
"""
def __init__(self):
"""
"""
self._color_map = [np.array([255, 0, 0]),
np.array([0, 255, 0]),
np.array([0, 0, 255]),
np.array([125, 125, 0]),
np.array([0, 125, 125]),
np.array([125, 0, 125]),
np.array([50, 100, 50]),
np.array([100, 50, 100])]
@staticmethod
def _embedding_feats_dbscan_cluster(embedding_image_feats):
"""
dbscan cluster
"""
db = DBSCAN(eps=0.4, min_samples=500)
try:
features = StandardScaler().fit_transform(embedding_image_feats)
db.fit(features)
except Exception as err:
print(err)
ret = {
'origin_features': None,
'cluster_nums': 0,
'db_labels': None,
'unique_labels': None,
'cluster_center': None
}
return ret
db_labels = db.labels_
unique_labels = np.unique(db_labels)
num_clusters = len(unique_labels)
cluster_centers = db.components_
ret = {
'origin_features': features,
'cluster_nums': num_clusters,
'db_labels': db_labels,
'unique_labels': unique_labels,
'cluster_center': cluster_centers
}
return ret
@staticmethod
def _get_lane_embedding_feats(binary_seg_ret, instance_seg_ret):
"""
get lane embedding features according the binary seg result
"""
idx = np.where(binary_seg_ret == 255)
lane_embedding_feats = instance_seg_ret[idx]
lane_coordinate = np.vstack((idx[1], idx[0])).transpose()
assert lane_embedding_feats.shape[0] == lane_coordinate.shape[0]
ret = {
'lane_embedding_feats': lane_embedding_feats,
'lane_coordinates': lane_coordinate
}
return ret
def apply_lane_feats_cluster(self, binary_seg_result, instance_seg_result):
"""
:param binary_seg_result:
:param instance_seg_result:
:return:
"""
# get embedding feats and coords
get_lane_embedding_feats_result = self._get_lane_embedding_feats(
binary_seg_ret=binary_seg_result,
instance_seg_ret=instance_seg_result
)
# dbscan cluster
dbscan_cluster_result = self._embedding_feats_dbscan_cluster(
embedding_image_feats=get_lane_embedding_feats_result['lane_embedding_feats']
)
mask = np.zeros(shape=[binary_seg_result.shape[0], binary_seg_result.shape[1], 3], dtype=np.uint8)
db_labels = dbscan_cluster_result['db_labels']
unique_labels = dbscan_cluster_result['unique_labels']
coord = get_lane_embedding_feats_result['lane_coordinates']
if db_labels is None:
return None, None
lane_coords = []
for index, label in enumerate(unique_labels.tolist()):
if label == -1:
continue
idx = np.where(db_labels == label)
pix_coord_idx = tuple((coord[idx][:, 1], coord[idx][:, 0]))
mask[pix_coord_idx] = self._color_map[index]
lane_coords.append(coord[idx])
return mask, lane_coords
class LaneNetPostProcessor(object):
"""
lanenet post process for lane generation
"""
def __init__(self, ipm_remap_file_path='./utils/tusimple_ipm_remap.yml'):
"""
convert front car view to bird view
"""
assert ops.exists(ipm_remap_file_path), '{:s} not exist'.format(ipm_remap_file_path)
self._cluster = _LaneNetCluster()
self._ipm_remap_file_path = ipm_remap_file_path
remap_file_load_ret = self._load_remap_matrix()
self._remap_to_ipm_x = remap_file_load_ret['remap_to_ipm_x']
self._remap_to_ipm_y = remap_file_load_ret['remap_to_ipm_y']
self._color_map = [np.array([255, 0, 0]),
np.array([0, 255, 0]),
np.array([0, 0, 255]),
np.array([125, 125, 0]),
np.array([0, 125, 125]),
np.array([125, 0, 125]),
np.array([50, 100, 50]),
np.array([100, 50, 100])]
def _load_remap_matrix(self):
fs = cv2.FileStorage(self._ipm_remap_file_path, cv2.FILE_STORAGE_READ)
remap_to_ipm_x = fs.getNode('remap_ipm_x').mat()
remap_to_ipm_y = fs.getNode('remap_ipm_y').mat()
ret = {
'remap_to_ipm_x': remap_to_ipm_x,
'remap_to_ipm_y': remap_to_ipm_y,
}
fs.release()
return ret
def postprocess(self, binary_seg_result, instance_seg_result=None,
min_area_threshold=100, source_image=None,
data_source='tusimple'):
# convert binary_seg_result
binary_seg_result = np.array(binary_seg_result * 255, dtype=np.uint8)
# apply image morphology operation to fill in the hold and reduce the small area
morphological_ret = _morphological_process(binary_seg_result, kernel_size=5)
connect_components_analysis_ret = _connect_components_analysis(image=morphological_ret)
labels = connect_components_analysis_ret[1]
stats = connect_components_analysis_ret[2]
for index, stat in enumerate(stats):
if stat[4] <= min_area_threshold:
idx = np.where(labels == index)
morphological_ret[idx] = 0
# apply embedding features cluster
mask_image, lane_coords = self._cluster.apply_lane_feats_cluster(
binary_seg_result=morphological_ret,
instance_seg_result=instance_seg_result
)
if mask_image is None:
return {
'mask_image': None,
'fit_params': None,
'source_image': None,
}
# lane line fit
fit_params = []
src_lane_pts = []
for lane_index, coords in enumerate(lane_coords):
if data_source == 'tusimple':
tmp_mask = np.zeros(shape=(720, 1280), dtype=np.uint8)
tmp_mask[tuple((np.int_(coords[:, 1] * 720 / 256), np.int_(coords[:, 0] * 1280 / 512)))] = 255
else:
raise ValueError('Wrong data source now only support tusimple')
tmp_ipm_mask = cv2.remap(
tmp_mask,
self._remap_to_ipm_x,
self._remap_to_ipm_y,
interpolation=cv2.INTER_NEAREST
)
nonzero_y = np.array(tmp_ipm_mask.nonzero()[0])
nonzero_x = np.array(tmp_ipm_mask.nonzero()[1])
fit_param = np.polyfit(nonzero_y, nonzero_x, 2)
fit_params.append(fit_param)
[ipm_image_height, ipm_image_width] = tmp_ipm_mask.shape
plot_y = np.linspace(10, ipm_image_height, ipm_image_height - 10)
fit_x = fit_param[0] * plot_y ** 2 + fit_param[1] * plot_y + fit_param[2]
lane_pts = []
for index in range(0, plot_y.shape[0], 5):
src_x = self._remap_to_ipm_x[
int(plot_y[index]), int(np.clip(fit_x[index], 0, ipm_image_width - 1))]
if src_x <= 0:
continue
src_y = self._remap_to_ipm_y[
int(plot_y[index]), int(np.clip(fit_x[index], 0, ipm_image_width - 1))]
src_y = src_y if src_y > 0 else 0
lane_pts.append([src_x, src_y])
src_lane_pts.append(lane_pts)
# tusimple test data sample point along y axis every 10 pixels
source_image_width = source_image.shape[1]
for index, single_lane_pts in enumerate(src_lane_pts):
single_lane_pt_x = np.array(single_lane_pts, dtype=np.float32)[:, 0]
single_lane_pt_y = np.array(single_lane_pts, dtype=np.float32)[:, 1]
if data_source == 'tusimple':
start_plot_y = 240
end_plot_y = 720
else:
raise ValueError('Wrong data source now only support tusimple')
step = int(math.floor((end_plot_y - start_plot_y) / 10))
for plot_y in np.linspace(start_plot_y, end_plot_y, step):
diff = single_lane_pt_y - plot_y
fake_diff_bigger_than_zero = diff.copy()
fake_diff_smaller_than_zero = diff.copy()
fake_diff_bigger_than_zero[np.where(diff <= 0)] = float('inf')
fake_diff_smaller_than_zero[np.where(diff > 0)] = float('-inf')
idx_low = np.argmax(fake_diff_smaller_than_zero)
idx_high = np.argmin(fake_diff_bigger_than_zero)
previous_src_pt_x = single_lane_pt_x[idx_low]
previous_src_pt_y = single_lane_pt_y[idx_low]
last_src_pt_x = single_lane_pt_x[idx_high]
last_src_pt_y = single_lane_pt_y[idx_high]
if previous_src_pt_y < start_plot_y or last_src_pt_y < start_plot_y or \
fake_diff_smaller_than_zero[idx_low] == float('-inf') or \
fake_diff_bigger_than_zero[idx_high] == float('inf'):
continue
interpolation_src_pt_x = (abs(previous_src_pt_y - plot_y) * previous_src_pt_x +
abs(last_src_pt_y - plot_y) * last_src_pt_x) / \
(abs(previous_src_pt_y - plot_y) + abs(last_src_pt_y - plot_y))
interpolation_src_pt_y = (abs(previous_src_pt_y - plot_y) * previous_src_pt_y +
abs(last_src_pt_y - plot_y) * last_src_pt_y) / \
(abs(previous_src_pt_y - plot_y) + abs(last_src_pt_y - plot_y))
if interpolation_src_pt_x > source_image_width or interpolation_src_pt_x < 10:
continue
lane_color = self._color_map[index].tolist()
cv2.circle(source_image, (int(interpolation_src_pt_x),
int(interpolation_src_pt_y)), 5, lane_color, -1)
ret = {
'mask_image': mask_image,
'fit_params': fit_params,
'source_image': source_image,
}
return ret