-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathreader.py
321 lines (281 loc) · 13.1 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
import os
import time
import codecs
import numpy as np
import cv2
from utils.config import cfg
import data_aug as aug
from pdseg.data_utils import GeneratorEnqueuer
from models.model_builder import ModelPhase
import copy
def cv2_imread(file_path, flag=cv2.IMREAD_COLOR):
# resolve cv2.imread open Chinese file path issues on Windows Platform.
return cv2.imdecode(np.fromfile(file_path, dtype=np.uint8), flag)
class LaneNetDataset():
def __init__(self,
file_list,
data_dir,
shuffle=False,
mode=ModelPhase.TRAIN):
self.mode = mode
self.shuffle = shuffle
self.data_dir = data_dir
self.shuffle_seed = 0
# NOTE: Please ensure file list was save in UTF-8 coding format
with codecs.open(file_list, 'r', 'utf-8') as flist:
self.lines = [line.strip() for line in flist]
self.all_lines = copy.deepcopy(self.lines)
if shuffle and cfg.NUM_TRAINERS > 1:
np.random.RandomState(self.shuffle_seed).shuffle(self.all_lines)
elif shuffle:
np.random.shuffle(self.lines)
def generator(self):
if self.shuffle and cfg.NUM_TRAINERS > 1:
np.random.RandomState(self.shuffle_seed).shuffle(self.all_lines)
num_lines = len(self.all_lines) // cfg.NUM_TRAINERS
self.lines = self.all_lines[num_lines * cfg.TRAINER_ID: num_lines * (cfg.TRAINER_ID + 1)]
self.shuffle_seed += 1
elif self.shuffle:
np.random.shuffle(self.lines)
for line in self.lines:
yield self.process_image(line, self.data_dir, self.mode)
def sharding_generator(self, pid=0, num_processes=1):
"""
Use line id as shard key for multiprocess io
It's a normal generator if pid=0, num_processes=1
"""
for index, line in enumerate(self.lines):
# Use index and pid to shard file list
if index % num_processes == pid:
yield self.process_image(line, self.data_dir, self.mode)
def batch_reader(self, batch_size):
br = self.batch(self.reader, batch_size)
for batch in br:
yield batch[0], batch[1], batch[2]
def multiprocess_generator(self, max_queue_size=32, num_processes=8):
# Re-shuffle file list
if self.shuffle and cfg.NUM_TRAINERS > 1:
np.random.RandomState(self.shuffle_seed).shuffle(self.all_lines)
num_lines = len(self.all_lines) // self.num_trainers
self.lines = self.all_lines[num_lines * self.trainer_id: num_lines * (self.trainer_id + 1)]
self.shuffle_seed += 1
elif self.shuffle:
np.random.shuffle(self.lines)
# Create multiple sharding generators according to num_processes for multiple processes
generators = []
for pid in range(num_processes):
generators.append(self.sharding_generator(pid, num_processes))
try:
enqueuer = GeneratorEnqueuer(generators)
enqueuer.start(max_queue_size=max_queue_size, workers=num_processes)
while True:
generator_out = None
while enqueuer.is_running():
if not enqueuer.queue.empty():
generator_out = enqueuer.queue.get(timeout=5)
break
else:
time.sleep(0.01)
if generator_out is None:
break
yield generator_out
finally:
if enqueuer is not None:
enqueuer.stop()
def batch(self, reader, batch_size, is_test=False, drop_last=False):
def batch_reader(is_test=False, drop_last=drop_last):
if is_test:
imgs, grts, grts_instance, img_names, valid_shapes, org_shapes = [], [], [], [], [], []
for img, grt, grt_instance, img_name, valid_shape, org_shape in reader():
imgs.append(img)
grts.append(grt)
grts_instance.append(grt_instance)
img_names.append(img_name)
valid_shapes.append(valid_shape)
org_shapes.append(org_shape)
if len(imgs) == batch_size:
yield np.array(imgs), np.array(
grts), np.array(grts_instance), img_names, np.array(valid_shapes), np.array(
org_shapes)
imgs, grts, grts_instance, img_names, valid_shapes, org_shapes = [], [], [], [], [], []
if not drop_last and len(imgs) > 0:
yield np.array(imgs), np.array(grts), np.array(grts_instance), img_names, np.array(
valid_shapes), np.array(org_shapes)
else:
imgs, labs, labs_instance, ignore = [], [], [], []
bs = 0
for img, lab, lab_instance, ig in reader():
imgs.append(img)
labs.append(lab)
labs_instance.append(lab_instance)
ignore.append(ig)
bs += 1
if bs == batch_size:
yield np.array(imgs), np.array(labs), np.array(labs_instance), np.array(ignore)
bs = 0
imgs, labs, labs_instance, ignore = [], [], [], []
if not drop_last and bs > 0:
yield np.array(imgs), np.array(labs), np.array(labs_instance), np.array(ignore)
return batch_reader(is_test, drop_last)
def load_image(self, line, src_dir, mode=ModelPhase.TRAIN):
# original image cv2.imread flag setting
cv2_imread_flag = cv2.IMREAD_COLOR
if cfg.DATASET.IMAGE_TYPE == "rgba":
# If use RBGA 4 channel ImageType, use IMREAD_UNCHANGED flags to
# reserver alpha channel
cv2_imread_flag = cv2.IMREAD_UNCHANGED
parts = line.strip().split(cfg.DATASET.SEPARATOR)
if len(parts) != 3:
if mode == ModelPhase.TRAIN or mode == ModelPhase.EVAL:
raise Exception("File list format incorrect! It should be"
" image_name{}label_name\\n".format(
cfg.DATASET.SEPARATOR))
img_name, grt_name, grt_instance_name = parts[0], None, None
else:
img_name, grt_name, grt_instance_name = parts[0], parts[1], parts[2]
img_path = os.path.join(src_dir, img_name)
img = cv2_imread(img_path, cv2_imread_flag)
if grt_name is not None:
grt_path = os.path.join(src_dir, grt_name)
grt_instance_path = os.path.join(src_dir, grt_instance_name)
grt = cv2_imread(grt_path, cv2.IMREAD_GRAYSCALE)
grt[grt == 255] = 1
grt[grt != 1] = 0
grt_instance = cv2_imread(grt_instance_path, cv2.IMREAD_GRAYSCALE)
else:
grt = None
grt_instance = None
if img is None:
raise Exception(
"Empty image, src_dir: {}, img: {} & lab: {}".format(
src_dir, img_path, grt_path))
img_height = img.shape[0]
img_width = img.shape[1]
if grt is not None:
grt_height = grt.shape[0]
grt_width = grt.shape[1]
if img_height != grt_height or img_width != grt_width:
raise Exception(
"source img and label img must has the same size")
else:
if mode == ModelPhase.TRAIN or mode == ModelPhase.EVAL:
raise Exception(
"Empty image, src_dir: {}, img: {} & lab: {}".format(
src_dir, img_path, grt_path))
if len(img.shape) < 3:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img_channels = img.shape[2]
if img_channels < 3:
raise Exception("PaddleSeg only supports gray, rgb or rgba image")
if img_channels != cfg.DATASET.DATA_DIM:
raise Exception(
"Input image channel({}) is not match cfg.DATASET.DATA_DIM({}), img_name={}"
.format(img_channels, cfg.DATASET.DATADIM, img_name))
if img_channels != len(cfg.MEAN):
raise Exception(
"img name {}, img chns {} mean size {}, size unequal".format(
img_name, img_channels, len(cfg.MEAN)))
if img_channels != len(cfg.STD):
raise Exception(
"img name {}, img chns {} std size {}, size unequal".format(
img_name, img_channels, len(cfg.STD)))
return img, grt, grt_instance, img_name, grt_name
def normalize_image(self, img):
""" 像素归一化后减均值除方差 """
img = img.transpose((2, 0, 1)).astype('float32') / 255.0
img_mean = np.array(cfg.MEAN).reshape((len(cfg.MEAN), 1, 1))
img_std = np.array(cfg.STD).reshape((len(cfg.STD), 1, 1))
img -= img_mean
img /= img_std
return img
def process_image(self, line, data_dir, mode):
""" process_image """
img, grt, grt_instance, img_name, grt_name = self.load_image(
line, data_dir, mode=mode)
if mode == ModelPhase.TRAIN:
img, grt, grt_instance = aug.resize(img, grt, grt_instance, mode)
if cfg.AUG.RICH_CROP.ENABLE:
if cfg.AUG.RICH_CROP.BLUR:
if cfg.AUG.RICH_CROP.BLUR_RATIO <= 0:
n = 0
elif cfg.AUG.RICH_CROP.BLUR_RATIO >= 1:
n = 1
else:
n = int(1.0 / cfg.AUG.RICH_CROP.BLUR_RATIO)
if n > 0:
if np.random.randint(0, n) == 0:
radius = np.random.randint(3, 10)
if radius % 2 != 1:
radius = radius + 1
if radius > 9:
radius = 9
img = cv2.GaussianBlur(img, (radius, radius), 0, 0)
img, grt = aug.random_rotation(
img,
grt,
rich_crop_max_rotation=cfg.AUG.RICH_CROP.MAX_ROTATION,
mean_value=cfg.DATASET.PADDING_VALUE)
img, grt = aug.rand_scale_aspect(
img,
grt,
rich_crop_min_scale=cfg.AUG.RICH_CROP.MIN_AREA_RATIO,
rich_crop_aspect_ratio=cfg.AUG.RICH_CROP.ASPECT_RATIO)
img = aug.hsv_color_jitter(
img,
brightness_jitter_ratio=cfg.AUG.RICH_CROP.
BRIGHTNESS_JITTER_RATIO,
saturation_jitter_ratio=cfg.AUG.RICH_CROP.
SATURATION_JITTER_RATIO,
contrast_jitter_ratio=cfg.AUG.RICH_CROP.
CONTRAST_JITTER_RATIO)
if cfg.AUG.FLIP:
if cfg.AUG.FLIP_RATIO <= 0:
n = 0
elif cfg.AUG.FLIP_RATIO >= 1:
n = 1
else:
n = int(1.0 / cfg.AUG.FLIP_RATIO)
if n > 0:
if np.random.randint(0, n) == 0:
img = img[::-1, :, :]
grt = grt[::-1, :]
if cfg.AUG.MIRROR:
if np.random.randint(0, 2) == 1:
img = img[:, ::-1, :]
grt = grt[:, ::-1]
img, grt = aug.rand_crop(img, grt, mode=mode)
elif ModelPhase.is_eval(mode):
img, grt, grt_instance = aug.resize(img, grt, grt_instance, mode=mode)
elif ModelPhase.is_visual(mode):
ori_img = img.copy()
img, grt, grt_instance = aug.resize(img, grt, grt_instance, mode=mode)
valid_shape = [img.shape[0], img.shape[1]]
else:
raise ValueError("Dataset mode={} Error!".format(mode))
# Normalize image
img = self.normalize_image(img)
if ModelPhase.is_train(mode) or ModelPhase.is_eval(mode):
grt = np.expand_dims(np.array(grt).astype('int32'), axis=0)
ignore = (grt != cfg.DATASET.IGNORE_INDEX).astype('int32')
if ModelPhase.is_train(mode):
return (img, grt, grt_instance, ignore)
elif ModelPhase.is_eval(mode):
return (img, grt, grt_instance, ignore)
elif ModelPhase.is_visual(mode):
return (img, grt, grt_instance, img_name, valid_shape, ori_img)