-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathmodel_builder.py
261 lines (211 loc) · 9.44 KB
/
model_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("..")
import struct
import paddle.fluid as fluid
from paddle.fluid.proto.framework_pb2 import VarType
from pdseg import solver
from utils.config import cfg
from pdseg.loss import multi_softmax_with_loss
from loss import discriminative_loss
from models.modeling import lanenet
class ModelPhase(object):
"""
Standard name for model phase in PaddleSeg
The following standard keys are defined:
* `TRAIN`: training mode.
* `EVAL`: testing/evaluation mode.
* `PREDICT`: prediction/inference mode.
* `VISUAL` : visualization mode
"""
TRAIN = 'train'
EVAL = 'eval'
PREDICT = 'predict'
VISUAL = 'visual'
@staticmethod
def is_train(phase):
return phase == ModelPhase.TRAIN
@staticmethod
def is_predict(phase):
return phase == ModelPhase.PREDICT
@staticmethod
def is_eval(phase):
return phase == ModelPhase.EVAL
@staticmethod
def is_visual(phase):
return phase == ModelPhase.VISUAL
@staticmethod
def is_valid_phase(phase):
""" Check valid phase """
if ModelPhase.is_train(phase) or ModelPhase.is_predict(phase) \
or ModelPhase.is_eval(phase) or ModelPhase.is_visual(phase):
return True
return False
def seg_model(image, class_num):
model_name = cfg.MODEL.MODEL_NAME
if model_name == 'lanenet':
logits = lanenet.lanenet(image, class_num)
else:
raise Exception(
"unknow model name, only support unet, deeplabv3p, icnet, pspnet, hrnet"
)
return logits
def softmax(logit):
logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
logit = fluid.layers.softmax(logit)
logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
return logit
def sigmoid_to_softmax(logit):
"""
one channel to two channel
"""
logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
logit = fluid.layers.sigmoid(logit)
logit_back = 1 - logit
logit = fluid.layers.concat([logit_back, logit], axis=-1)
logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
return logit
def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
if not ModelPhase.is_valid_phase(phase):
raise ValueError("ModelPhase {} is not valid!".format(phase))
if ModelPhase.is_train(phase):
width = cfg.TRAIN_CROP_SIZE[0]
height = cfg.TRAIN_CROP_SIZE[1]
else:
width = cfg.EVAL_CROP_SIZE[0]
height = cfg.EVAL_CROP_SIZE[1]
image_shape = [cfg.DATASET.DATA_DIM, height, width]
grt_shape = [1, height, width]
class_num = cfg.DATASET.NUM_CLASSES
with fluid.program_guard(main_prog, start_prog):
with fluid.unique_name.guard():
image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(
name='label', shape=grt_shape, dtype='int32')
if cfg.MODEL.MODEL_NAME == 'lanenet':
label_instance = fluid.layers.data(
name='label_instance', shape=grt_shape, dtype='int32')
mask = fluid.layers.data(
name='mask', shape=grt_shape, dtype='int32')
# use PyReader when doing traning and evaluation
if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
py_reader = fluid.io.PyReader(
feed_list=[image, label, label_instance, mask],
capacity=cfg.DATALOADER.BUF_SIZE,
iterable=False,
use_double_buffer=True)
loss_type = cfg.SOLVER.LOSS
if not isinstance(loss_type, list):
loss_type = list(loss_type)
logits = seg_model(image, class_num)
if ModelPhase.is_train(phase):
loss_valid = False
valid_loss = []
if cfg.MODEL.MODEL_NAME == 'lanenet':
embeding_logit = logits[1]
logits = logits[0]
disc_loss, _, _, l_reg = discriminative_loss(embeding_logit, label_instance, 4,
image_shape[1:], 0.5, 3.0, 1.0, 1.0, 0.001)
if "softmax_loss" in loss_type:
weight = None
if cfg.MODEL.MODEL_NAME == 'lanenet':
weight = get_dynamic_weight(label)
seg_loss = multi_softmax_with_loss(logits, label, mask, class_num, weight)
loss_valid = True
valid_loss.append("softmax_loss")
if not loss_valid:
raise Exception("SOLVER.LOSS: {} is set wrong. it should "
"include one of (softmax_loss, bce_loss, dice_loss) at least"
" example: ['softmax_loss']".format(cfg.SOLVER.LOSS))
invalid_loss = [x for x in loss_type if x not in valid_loss]
if len(invalid_loss) > 0:
print("Warning: the loss {} you set is invalid. it will not be included in loss computed.".format(invalid_loss))
avg_loss = disc_loss + 0.00001 * l_reg + seg_loss
#get pred result in original size
if isinstance(logits, tuple):
logit = logits[0]
else:
logit = logits
if logit.shape[2:] != label.shape[2:]:
logit = fluid.layers.resize_bilinear(logit, label.shape[2:])
# return image input and logit output for inference graph prune
if ModelPhase.is_predict(phase):
if class_num == 1:
logit = sigmoid_to_softmax(logit)
else:
logit = softmax(logit)
return image, logit
if class_num == 1:
out = sigmoid_to_softmax(logit)
out = fluid.layers.transpose(out, [0, 2, 3, 1])
else:
out = fluid.layers.transpose(logit, [0, 2, 3, 1])
pred = fluid.layers.argmax(out, axis=3)
pred = fluid.layers.unsqueeze(pred, axes=[3])
if ModelPhase.is_visual(phase):
if cfg.MODEL.MODEL_NAME == 'lanenet':
return pred, logits[1]
if class_num == 1:
logit = sigmoid_to_softmax(logit)
else:
logit = softmax(logit)
return pred, logit
accuracy, fp, fn = compute_metric(pred, label)
if ModelPhase.is_eval(phase):
return py_reader, pred, label, mask, accuracy, fp, fn
if ModelPhase.is_train(phase):
optimizer = solver.Solver(main_prog, start_prog)
decayed_lr = optimizer.optimise(avg_loss)
return py_reader, avg_loss, decayed_lr, pred, label, mask, disc_loss, seg_loss, accuracy, fp, fn
def compute_metric(pred, label):
label = fluid.layers.transpose(label, [0, 2, 3, 1])
idx = fluid.layers.where(pred == 1)
pix_cls_ret = fluid.layers.gather_nd(label, idx)
correct_num = fluid.layers.reduce_sum(fluid.layers.cast(pix_cls_ret, 'float32'))
gt_num = fluid.layers.cast(fluid.layers.shape(fluid.layers.gather_nd(label,
fluid.layers.where(label == 1)))[0], 'int64')
pred_num = fluid.layers.cast(fluid.layers.shape(fluid.layers.gather_nd(pred, idx))[0], 'int64')
accuracy = correct_num / gt_num
false_pred = pred_num - correct_num
fp = fluid.layers.cast(false_pred, 'float32') / fluid.layers.cast(fluid.layers.shape(pix_cls_ret)[0], 'int64')
label_cls_ret = fluid.layers.gather_nd(label, fluid.layers.where(label == 1))
mis_pred = fluid.layers.cast(fluid.layers.shape(label_cls_ret)[0], 'int64') - correct_num
fn = fluid.layers.cast(mis_pred, 'float32') / fluid.layers.cast(fluid.layers.shape(label_cls_ret)[0], 'int64')
accuracy.stop_gradient = True
fp.stop_gradient = True
fn.stop_gradient = True
return accuracy, fp, fn
def get_dynamic_weight(label):
label = fluid.layers.reshape(label, [-1])
unique_labels, unique_id, counts = fluid.layers.unique_with_counts(label)
counts = fluid.layers.cast(counts, 'float32')
weight = 1.0 / fluid.layers.log((counts / fluid.layers.reduce_sum(counts) + 1.02))
return weight
def to_int(string, dest="I"):
return struct.unpack(dest, string)[0]
def parse_shape_from_file(filename):
with open(filename, "rb") as file:
version = file.read(4)
lod_level = to_int(file.read(8), dest="Q")
for i in range(lod_level):
_size = to_int(file.read(8), dest="Q")
_ = file.read(_size)
version = file.read(4)
tensor_desc_size = to_int(file.read(4))
tensor_desc = VarType.TensorDesc()
tensor_desc.ParseFromString(file.read(tensor_desc_size))
return tuple(tensor_desc.dims)