-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathpredict.py
114 lines (97 loc) · 3.39 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
import paddle
import paddleseg
from paddleseg.cvlibs import manager
from paddleseg.utils import get_sys_env, logger
LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(LOCAL_PATH, '..'))
manager.BACKBONES._components_dict.clear()
manager.TRANSFORMS._components_dict.clear()
import ppmatting
from ppmatting.core import predict
from ppmatting.utils import get_image_list, Config, MatBuilder
def parse_args():
parser = argparse.ArgumentParser(description='Model training')
parser.add_argument(
"--config", dest="cfg", help="The config file.", default=None, type=str)
parser.add_argument(
'--model_path',
dest='model_path',
help='The path of model for prediction',
type=str,
default=None)
parser.add_argument(
'--image_path',
dest='image_path',
help='The path of image, it can be a file or a directory including images',
type=str,
default=None)
parser.add_argument(
'--trimap_path',
dest='trimap_path',
help='The path of trimap, it can be a file or a directory including images. '
'The image should be the same as image when it is a directory.',
type=str,
default=None)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the model snapshot',
type=str,
default='./output/results')
parser.add_argument(
'--fg_estimate',
default=True,
type=eval,
choices=[True, False],
help='Whether to estimate foreground when predicting.')
parser.add_argument(
'--device',
dest='device',
help='Set the device type, which may be GPU, CPU or XPU.',
default='gpu',
type=str)
return parser.parse_args()
def main(args):
assert args.cfg is not None, \
'No configuration file specified, please set --config'
cfg = Config(args.cfg)
builder = MatBuilder(cfg)
paddleseg.utils.show_env_info()
paddleseg.utils.show_cfg_info(cfg)
paddleseg.utils.set_device(args.device)
model = builder.model
transforms = ppmatting.transforms.Compose(builder.val_transforms)
image_list, image_dir = get_image_list(args.image_path)
if args.trimap_path is None:
trimap_list = None
else:
trimap_list, _ = get_image_list(args.trimap_path)
logger.info('Number of predict images = {}'.format(len(image_list)))
predict(
model,
model_path=args.model_path,
transforms=transforms,
image_list=image_list,
image_dir=image_dir,
trimap_list=trimap_list,
save_dir=args.save_dir,
fg_estimate=args.fg_estimate)
if __name__ == '__main__':
args = parse_args()
main(args)