-
Notifications
You must be signed in to change notification settings - Fork 8.2k
/
Copy pathrec_mobilenet_v3.py
executable file
·267 lines (249 loc) · 9.83 KB
/
rec_mobilenet_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
__all__ = [
'MobileNetV3', 'MobileNetV3_small_x0_35', 'MobileNetV3_small_x0_5',
'MobileNetV3_small_x0_75', 'MobileNetV3_small_x1_0',
'MobileNetV3_small_x1_25', 'MobileNetV3_large_x0_35',
'MobileNetV3_large_x0_5', 'MobileNetV3_large_x0_75',
'MobileNetV3_large_x1_0', 'MobileNetV3_large_x1_25'
]
class MobileNetV3():
def __init__(self, params):
self.scale = params.get("scale", 0.5)
model_name = params.get("model_name", "small")
large_stride = params.get("large_stride", [1, 2, 2, 2])
small_stride = params.get("small_stride", [2, 2, 2, 2])
assert isinstance(large_stride, list), "large_stride type must " \
"be list but got {}".format(type(large_stride))
assert isinstance(small_stride, list), "small_stride type must " \
"be list but got {}".format(type(small_stride))
assert len(large_stride) == 4, "large_stride length must be " \
"4 but got {}".format(len(large_stride))
assert len(small_stride) == 4, "small_stride length must be " \
"4 but got {}".format(len(small_stride))
self.inplanes = 16
if model_name == "large":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, 'relu', large_stride[0]],
[3, 64, 24, False, 'relu', (large_stride[1], 1)],
[3, 72, 24, False, 'relu', 1],
[5, 72, 40, True, 'relu', (large_stride[2], 1)],
[5, 120, 40, True, 'relu', 1],
[5, 120, 40, True, 'relu', 1],
[3, 240, 80, False, 'hard_swish', 1],
[3, 200, 80, False, 'hard_swish', 1],
[3, 184, 80, False, 'hard_swish', 1],
[3, 184, 80, False, 'hard_swish', 1],
[3, 480, 112, True, 'hard_swish', 1],
[3, 672, 112, True, 'hard_swish', 1],
[5, 672, 160, True, 'hard_swish', (large_stride[3], 1)],
[5, 960, 160, True, 'hard_swish', 1],
[5, 960, 160, True, 'hard_swish', 1],
]
self.cls_ch_squeeze = 960
self.cls_ch_expand = 1280
elif model_name == "small":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, 'relu', (small_stride[0], 1)],
[3, 72, 24, False, 'relu', (small_stride[1], 1)],
[3, 88, 24, False, 'relu', 1],
[5, 96, 40, True, 'hard_swish', (small_stride[2], 1)],
[5, 240, 40, True, 'hard_swish', 1],
[5, 240, 40, True, 'hard_swish', 1],
[5, 120, 48, True, 'hard_swish', 1],
[5, 144, 48, True, 'hard_swish', 1],
[5, 288, 96, True, 'hard_swish', (small_stride[3], 1)],
[5, 576, 96, True, 'hard_swish', 1],
[5, 576, 96, True, 'hard_swish', 1],
]
self.cls_ch_squeeze = 576
self.cls_ch_expand = 1280
else:
raise NotImplementedError("mode[" + model_name +
"_model] is not implemented!")
supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
assert self.scale in supported_scale, \
"supported scales are {} but input scale is {}".format(supported_scale, self.scale)
def __call__(self, input):
scale = self.scale
inplanes = self.inplanes
cfg = self.cfg
cls_ch_squeeze = self.cls_ch_squeeze
cls_ch_expand = self.cls_ch_expand
#conv1
conv = self.conv_bn_layer(
input,
filter_size=3,
num_filters=self.make_divisible(inplanes * scale),
stride=2,
padding=1,
num_groups=1,
if_act=True,
act='hard_swish',
name='conv1')
i = 0
inplanes = self.make_divisible(inplanes * scale)
for layer_cfg in cfg:
conv = self.residual_unit(
input=conv,
num_in_filter=inplanes,
num_mid_filter=self.make_divisible(scale * layer_cfg[1]),
num_out_filter=self.make_divisible(scale * layer_cfg[2]),
act=layer_cfg[4],
stride=layer_cfg[5],
filter_size=layer_cfg[0],
use_se=layer_cfg[3],
name='conv' + str(i + 2))
inplanes = self.make_divisible(scale * layer_cfg[2])
i += 1
conv = self.conv_bn_layer(
input=conv,
filter_size=1,
num_filters=self.make_divisible(scale * cls_ch_squeeze),
stride=1,
padding=0,
num_groups=1,
if_act=True,
act='hard_swish',
name='conv_last')
conv = fluid.layers.pool2d(
input=conv,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='max')
return conv
def conv_bn_layer(self,
input,
filter_size,
num_filters,
stride,
padding,
num_groups=1,
if_act=True,
act=None,
name=None,
use_cudnn=True,
res_last_bn_init=False):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
bn_name = name + '_bn'
bn = fluid.layers.batch_norm(
input=conv,
param_attr=ParamAttr(
name=bn_name + "_scale",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
bias_attr=ParamAttr(
name=bn_name + "_offset",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
if if_act:
if act == 'relu':
bn = fluid.layers.relu(bn)
elif act == 'hard_swish':
bn = fluid.layers.hard_swish(bn)
return bn
def make_divisible(self, v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
def se_block(self, input, num_out_filter, ratio=4, name=None):
num_mid_filter = num_out_filter // ratio
pool = fluid.layers.pool2d(
input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
conv1 = fluid.layers.conv2d(
input=pool,
filter_size=1,
num_filters=num_mid_filter,
act='relu',
param_attr=ParamAttr(name=name + '_1_weights'),
bias_attr=ParamAttr(name=name + '_1_offset'))
conv2 = fluid.layers.conv2d(
input=conv1,
filter_size=1,
num_filters=num_out_filter,
act='hard_sigmoid',
param_attr=ParamAttr(name=name + '_2_weights'),
bias_attr=ParamAttr(name=name + '_2_offset'))
scale = fluid.layers.elementwise_mul(x=input, y=conv2, axis=0)
return scale
def residual_unit(self,
input,
num_in_filter,
num_mid_filter,
num_out_filter,
stride,
filter_size,
act=None,
use_se=False,
name=None):
conv0 = self.conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_mid_filter,
stride=1,
padding=0,
if_act=True,
act=act,
name=name + '_expand')
conv1 = self.conv_bn_layer(
input=conv0,
filter_size=filter_size,
num_filters=num_mid_filter,
stride=stride,
padding=int((filter_size - 1) // 2),
if_act=True,
act=act,
num_groups=num_mid_filter,
use_cudnn=False,
name=name + '_depthwise')
if use_se:
conv1 = self.se_block(
input=conv1, num_out_filter=num_mid_filter, name=name + '_se')
conv2 = self.conv_bn_layer(
input=conv1,
filter_size=1,
num_filters=num_out_filter,
stride=1,
padding=0,
if_act=False,
name=name + '_linear',
res_last_bn_init=True)
if num_in_filter != num_out_filter or stride != 1:
return conv2
else:
return fluid.layers.elementwise_add(x=input, y=conv2, act=None)