-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathdetection_predictor.cpp
455 lines (422 loc) · 20.6 KB
/
detection_predictor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "detection_predictor.h"
#include <cstring>
#include <cmath>
#include <fstream>
#include "utils/detection_result.pb.h"
#undef min
namespace PaddleSolution {
/* lod_buffer: every item in lod_buffer is an image matrix after preprocessing
* input_buffer: same data with lod_buffer after flattening to 1-D vector and padding, needed to be empty before using this function
*/
void padding_minibatch(const std::vector<std::vector<float>> &lod_buffer,
std::vector<float> &input_buffer,
std::vector<int> &resize_heights,
std::vector<int> &resize_widths,
int channels, int coarsest_stride = 1) {
int batch_size = lod_buffer.size();
int max_h = -1;
int max_w = -1;
for (int i = 0; i < batch_size; ++i) {
max_h = (max_h > resize_heights[i])? max_h:resize_heights[i];
max_w = (max_w > resize_widths[i])? max_w:resize_widths[i];
}
max_h = static_cast<int>(ceil(static_cast<float>(max_h)
/ static_cast<float>(coarsest_stride)) * coarsest_stride);
max_w = static_cast<int>(ceil(static_cast<float>(max_w)
/ static_cast<float>(coarsest_stride)) * coarsest_stride);
std::cout << "max_w: " << max_w << " max_h: " << max_h << std::endl;
input_buffer.insert(input_buffer.end(),
batch_size * channels * max_h * max_w, 0);
// flatten tensor and padding
for (int i = 0; i < lod_buffer.size(); ++i) {
float *input_buffer_ptr = input_buffer.data()
+ i * channels * max_h * max_w;
const float *lod_ptr = lod_buffer[i].data();
for (int c = 0; c < channels; ++c) {
for (int h = 0; h < resize_heights[i]; ++h) {
memcpy(input_buffer_ptr, lod_ptr,
resize_widths[i] * sizeof(float));
lod_ptr += resize_widths[i];
input_buffer_ptr += max_w;
}
input_buffer_ptr += (max_h - resize_heights[i]) * max_w;
}
}
// change resize w, h
for (int i = 0; i < batch_size; ++i) {
resize_widths[i] = max_w;
resize_heights[i] = max_h;
}
}
void output_detection_result(const float* out_addr,
const std::vector<std::vector<size_t>> &lod_vector,
const std::vector<std::string> &imgs_batch) {
for (int i = 0; i < lod_vector[0].size() - 1; ++i) {
DetectionResult detection_result;
detection_result.set_filename(imgs_batch[i]);
std::cout << imgs_batch[i] << ":" << std::endl;
for (int j = lod_vector[0][i]; j < lod_vector[0][i+1]; ++j) {
DetectionBox *box_ptr = detection_result.add_detection_boxes();
box_ptr->set_class_(
static_cast<int>(round(out_addr[0 + j * 6])));
box_ptr->set_score(out_addr[1 + j * 6]);
box_ptr->set_left_top_x(out_addr[2 + j * 6]);
box_ptr->set_left_top_y(out_addr[3 + j * 6]);
box_ptr->set_right_bottom_x(out_addr[4 + j * 6]);
box_ptr->set_right_bottom_y(out_addr[5 + j * 6]);
printf("Class %d, score = %f, left top = [%f, %f], right bottom = [%f, %f]\n",
static_cast<int>(round(out_addr[0 + j * 6])),
out_addr[1 + j * 6],
out_addr[2 + j * 6],
out_addr[3 + j * 6],
out_addr[4 + j * 6],
out_addr[5 + j * 6]);
}
printf("\n");
std::ofstream output(imgs_batch[i] + ".pb",
std::ios::out | std::ios::trunc | std::ios::binary);
detection_result.SerializeToOstream(&output);
output.close();
}
}
int DetectionPredictor::init(const std::string& conf) {
if (!_model_config.load_config(conf)) {
#ifdef _WIN32
std::cerr << "Fail to load config file: [" << conf << "], "
<< "please check whether the config file path is correct"
<< std::endl;
#else
LOG(FATAL) << "Fail to load config file: [" << conf << "], "
<< "please check whether the config file path is correct";
#endif
return -1;
}
_preprocessor = PaddleSolution::create_processor(conf);
if (_preprocessor == nullptr) {
#ifdef _WIN32
std::cerr << "Failed to create_processor, please check whether you"
<< " write a correct config file." << std::endl;
#else
LOG(FATAL) << "Failed to create_processor, please check whether"
<< " you write a correct config file.";
#endif
return -1;
}
bool use_gpu = _model_config._use_gpu;
const auto& model_dir = _model_config._model_path;
const auto& model_filename = _model_config._model_file_name;
const auto& params_filename = _model_config._param_file_name;
// load paddle model file
if (_model_config._predictor_mode == "NATIVE") {
paddle::NativeConfig config;
auto prog_file = utils::path_join(model_dir, model_filename);
auto param_file = utils::path_join(model_dir, params_filename);
config.prog_file = prog_file;
config.param_file = param_file;
config.fraction_of_gpu_memory = 0;
config.use_gpu = use_gpu;
config.device = 0;
_main_predictor = paddle::CreatePaddlePredictor(config);
} else if (_model_config._predictor_mode == "ANALYSIS") {
paddle::AnalysisConfig config;
if (use_gpu) {
config.EnableUseGpu(100, 0);
}
auto prog_file = utils::path_join(model_dir, model_filename);
auto param_file = utils::path_join(model_dir, params_filename);
config.SetModel(prog_file, param_file);
config.SwitchUseFeedFetchOps(false);
config.SwitchSpecifyInputNames(true);
config.EnableMemoryOptim();
// config.SwitchIrOptim(true);
// config.EnableTensorRtEngine(1<<4, 30, 3);
_main_predictor = paddle::CreatePaddlePredictor(config);
} else {
return -1;
}
return 0;
}
int DetectionPredictor::predict(const std::vector<std::string>& imgs) {
if (imgs.size() == 0) {
#ifdef _WIN32
std::cerr << "No image found! Please check whether the images path"
<< " is correct or the format of images is correct\n"
<< "Supporting format: [.jpeg|.jpg|.JPEG|.JPG|.bmp|.BMP|.png|.PNG]" << std::endl;
#else
LOG(ERROR) << "No image found! Please check whether the images path"
<< " is correct or the format of images is correct\n"
<< "Supporting format: [.jpeg|.jpg|.JPEG|.JPG|.bmp|.BMP|.png|.PNG]";
#endif
return -1;
}
if (_model_config._predictor_mode == "NATIVE") {
return native_predict(imgs);
} else if (_model_config._predictor_mode == "ANALYSIS") {
return analysis_predict(imgs);
}
return -1;
}
int DetectionPredictor::native_predict(const std::vector<std::string>& imgs) {
int config_batch_size = _model_config._batch_size;
int channels = _model_config._channels;
int eval_width = _model_config._resize[0];
int eval_height = _model_config._resize[1];
std::size_t total_size = imgs.size();
int default_batch_size = std::min(config_batch_size,
static_cast<int>(total_size));
int batch = total_size / default_batch_size +
((total_size % default_batch_size) != 0);
int batch_buffer_size = default_batch_size * channels
* eval_width * eval_height;
auto& input_buffer = _buffer;
auto& imgs_batch = _imgs_batch;
float sr;
for (int u = 0; u < batch; ++u) {
int batch_size = default_batch_size;
if (u == (batch - 1) && (total_size % default_batch_size)) {
batch_size = total_size % default_batch_size;
}
int real_buffer_size = batch_size * channels
* eval_width * eval_height;
std::vector<paddle::PaddleTensor> feeds;
input_buffer.clear();
imgs_batch.clear();
for (int i = 0; i < batch_size; ++i) {
int idx = u * default_batch_size + i;
imgs_batch.push_back(imgs[idx]);
}
std::vector<int> ori_widths;
std::vector<int> ori_heights;
std::vector<int> resize_widths;
std::vector<int> resize_heights;
std::vector<float> scale_ratios;
ori_widths.resize(batch_size);
ori_heights.resize(batch_size);
resize_widths.resize(batch_size);
resize_heights.resize(batch_size);
scale_ratios.resize(batch_size);
std::vector<std::vector<float>> lod_buffer(batch_size);
if (!_preprocessor->batch_process(imgs_batch, lod_buffer,
ori_widths.data(),
ori_heights.data(),
resize_widths.data(),
resize_heights.data(),
scale_ratios.data())) {
return -1;
}
// flatten and padding
padding_minibatch(lod_buffer, input_buffer, resize_heights,
resize_widths, channels,
_model_config._coarsest_stride);
paddle::PaddleTensor im_tensor, im_size_tensor, im_info_tensor;
im_tensor.name = "image";
im_tensor.shape = std::vector<int>({ batch_size,
channels,
resize_heights[0],
resize_widths[0] });
im_tensor.data.Reset(input_buffer.data(),
input_buffer.size() * sizeof(float));
im_tensor.dtype = paddle::PaddleDType::FLOAT32;
std::vector<float> image_infos;
for (int i = 0; i < batch_size; ++i) {
image_infos.push_back(resize_heights[i]);
image_infos.push_back(resize_widths[i]);
image_infos.push_back(scale_ratios[i]);
}
im_info_tensor.name = "info";
im_info_tensor.shape = std::vector<int>({batch_size, 3});
im_info_tensor.data.Reset(image_infos.data(),
batch_size * 3 * sizeof(float));
im_info_tensor.dtype = paddle::PaddleDType::FLOAT32;
std::vector<int> image_size;
for (int i = 0; i < batch_size; ++i) {
image_size.push_back(ori_heights[i]);
image_size.push_back(ori_widths[i]);
}
std::vector<float> image_size_f;
for (int i = 0; i < batch_size; ++i) {
image_size_f.push_back(ori_heights[i]);
image_size_f.push_back(ori_widths[i]);
image_size_f.push_back(1.0);
}
int feeds_size = _model_config._feeds_size;
im_size_tensor.name = "im_size";
if (feeds_size == 2) {
im_size_tensor.shape = std::vector<int>({ batch_size, 2});
im_size_tensor.data.Reset(image_size.data(),
batch_size * 2 * sizeof(int));
im_size_tensor.dtype = paddle::PaddleDType::INT32;
} else if (feeds_size == 3) {
im_size_tensor.shape = std::vector<int>({ batch_size, 3});
im_size_tensor.data.Reset(image_size_f.data(),
batch_size * 3 * sizeof(float));
im_size_tensor.dtype = paddle::PaddleDType::FLOAT32;
}
std::cout << "Feed size = " << feeds_size << std::endl;
feeds.push_back(im_tensor);
if (_model_config._feeds_size > 2) {
feeds.push_back(im_info_tensor);
}
feeds.push_back(im_size_tensor);
_outputs.clear();
auto t1 = std::chrono::high_resolution_clock::now();
if (!_main_predictor->Run(feeds, &_outputs, batch_size)) {
#ifdef _WIN32
std::cerr << "Failed: NativePredictor->Run() return false at batch: " << u;
#else
LOG(ERROR) << "Failed: NativePredictor->Run() return false at batch: " << u;
#endif
continue;
}
auto t2 = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(t2 - t1).count();
std::cout << "runtime = " << duration << std::endl;
std::cout << "Number of outputs:" << _outputs.size() << std::endl;
int out_num = 1;
// print shape of first output tensor for debugging
std::cout << "size of outputs[" << 0 << "]: (";
for (int j = 0; j < _outputs[0].shape.size(); ++j) {
out_num *= _outputs[0].shape[j];
std::cout << _outputs[0].shape[j] << ",";
}
std::cout << ")" << std::endl;
// const size_t nums = _outputs.front().data.length() / sizeof(float);
// if (out_num % batch_size != 0 || out_num != nums) {
// LOG(ERROR) << "outputs data size mismatch with shape size.";
// return -1;
// }
float* out_addr = reinterpret_cast<float *>(_outputs[0].data.data());
output_detection_result(out_addr, _outputs[0].lod, imgs_batch);
}
return 0;
}
int DetectionPredictor::analysis_predict(
const std::vector<std::string>& imgs) {
int config_batch_size = _model_config._batch_size;
int channels = _model_config._channels;
int eval_width = _model_config._resize[0];
int eval_height = _model_config._resize[1];
auto total_size = imgs.size();
int default_batch_size = std::min(config_batch_size,
static_cast<int>(total_size));
int batch = total_size / default_batch_size
+ ((total_size % default_batch_size) != 0);
int batch_buffer_size = default_batch_size * channels
* eval_width * eval_height;
auto& input_buffer = _buffer;
auto& imgs_batch = _imgs_batch;
for (int u = 0; u < batch; ++u) {
int batch_size = default_batch_size;
if (u == (batch - 1) && (total_size % default_batch_size)) {
batch_size = total_size % default_batch_size;
}
int real_buffer_size = batch_size * channels *
eval_width * eval_height;
std::vector<paddle::PaddleTensor> feeds;
// input_buffer.resize(real_buffer_size);
input_buffer.clear();
imgs_batch.clear();
for (int i = 0; i < batch_size; ++i) {
int idx = u * default_batch_size + i;
imgs_batch.push_back(imgs[idx]);
}
std::vector<int> ori_widths;
std::vector<int> ori_heights;
std::vector<int> resize_widths;
std::vector<int> resize_heights;
std::vector<float> scale_ratios;
ori_widths.resize(batch_size);
ori_heights.resize(batch_size);
resize_widths.resize(batch_size);
resize_heights.resize(batch_size);
scale_ratios.resize(batch_size);
std::vector<std::vector<float>> lod_buffer(batch_size);
if (!_preprocessor->batch_process(imgs_batch, lod_buffer,
ori_widths.data(),
ori_heights.data(),
resize_widths.data(),
resize_heights.data(),
scale_ratios.data())) {
std::cout << "Failed to preprocess!" << std::endl;
return -1;
}
// flatten tensor
padding_minibatch(lod_buffer, input_buffer, resize_heights,
resize_widths, channels,
_model_config._coarsest_stride);
std::vector<std::string> input_names = _main_predictor->GetInputNames();
auto im_tensor = _main_predictor->GetInputTensor(
input_names.front());
im_tensor->Reshape({ batch_size, channels,
resize_heights[0], resize_widths[0] });
im_tensor->copy_from_cpu(input_buffer.data());
if (input_names.size() > 2) {
std::vector<float> image_infos;
for (int i = 0; i < batch_size; ++i) {
image_infos.push_back(resize_heights[i]);
image_infos.push_back(resize_widths[i]);
image_infos.push_back(scale_ratios[i]);
}
auto im_info_tensor = _main_predictor->GetInputTensor(
input_names[1]);
im_info_tensor->Reshape({batch_size, 3});
im_info_tensor->copy_from_cpu(image_infos.data());
}
std::vector<int> image_size;
for (int i = 0; i < batch_size; ++i) {
image_size.push_back(ori_heights[i]);
image_size.push_back(ori_widths[i]);
}
std::vector<float> image_size_f;
for (int i = 0; i < batch_size; ++i) {
image_size_f.push_back(static_cast<float>(ori_heights[i]));
image_size_f.push_back(static_cast<float>(ori_widths[i]));
image_size_f.push_back(1.0);
}
auto im_size_tensor = _main_predictor->GetInputTensor(
input_names.back());
if (input_names.size() > 2) {
im_size_tensor->Reshape({batch_size, 3});
im_size_tensor->copy_from_cpu(image_size_f.data());
} else {
im_size_tensor->Reshape({batch_size, 2});
im_size_tensor->copy_from_cpu(image_size.data());
}
auto t1 = std::chrono::high_resolution_clock::now();
_main_predictor->ZeroCopyRun();
auto t2 = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(t2 - t1).count();
std::cout << "runtime = " << duration << std::endl;
auto output_names = _main_predictor->GetOutputNames();
auto output_t = _main_predictor->GetOutputTensor(output_names[0]);
std::vector<float> out_data;
std::vector<int> output_shape = output_t->shape();
int out_num = 1;
std::cout << "size of outputs[" << 0 << "]: (";
for (int j = 0; j < output_shape.size(); ++j) {
out_num *= output_shape[j];
std::cout << output_shape[j] << ",";
}
std::cout << ")" << std::endl;
out_data.resize(out_num);
output_t->copy_to_cpu(out_data.data());
float* out_addr = reinterpret_cast<float *>(out_data.data());
auto lod_vector = output_t->lod();
output_detection_result(out_addr, lod_vector, imgs_batch);
}
return 0;
}
} // namespace PaddleSolution