Skip to content

Latest commit

 

History

History

visualizer

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

EmbodiedScanBaseVisualizer Simple Tutorial

To use visualizer, you need to specify the visualizer in the config. Add the following command to your config file.

visualizer = dict(type='EmbodiedScanBaseVisualizer', vis_backends=[dict(type='LocalVisBackend')], save_dir='temp_dir')

Then call the visualizer in models.

def predict(self, batch_inputs_dict, batch_data_samples, **kwargs):
    x = self.extract_feat(batch_inputs_dict, batch_data_samples)
    results_list = self.bbox_head.predict(x, batch_data_samples, **kwargs)
    predictions = self.add_pred_to_datasample(batch_data_samples, results_list)

    # visualization
    from embodiedscan.visualizer import EmbodiedScanBaseVisualizer
    visualizer = EmbodiedScanBaseVisualizer.get_current_instance()
    visualizer.visualize_scene(predictions)

    return predictions

The visualizer will apply Non-Maximum Suppression(NMS) to avoid redundant boxes in the visualization. You can specify its parameters by passing nms_args.

visualizer.visualize_scene(predictions, nms_args = dict(iou_thr = 0.15, score_thr = 0.075, topk_per_class = 10))