|
| 1 | +_base_ = ['../default_runtime.py'] |
| 2 | +n_points = 100000 |
| 3 | + |
| 4 | +backend_args = None |
| 5 | +# Uncomment the following if use ceph or other file clients. |
| 6 | +# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient |
| 7 | +# for more details. |
| 8 | +# file_client_args = dict( |
| 9 | +# backend='petrel', |
| 10 | +# path_mapping=dict({ |
| 11 | +# './data/scannet/': |
| 12 | +# 's3://openmmlab/datasets/detection3d/scannet_processed/', |
| 13 | +# 'data/scannet/': |
| 14 | +# 's3://openmmlab/datasets/detection3d/scannet_processed/' |
| 15 | +# })) |
| 16 | + |
| 17 | +metainfo = dict(classes='all') |
| 18 | + |
| 19 | +model = dict( |
| 20 | + type='SparseFeatureFusion3DGrounder', |
| 21 | + num_queries=256, |
| 22 | + voxel_size=0.01, |
| 23 | + data_preprocessor=dict(type='Det3DDataPreprocessor', |
| 24 | + mean=[123.675, 116.28, 103.53], |
| 25 | + std=[58.395, 57.12, 57.375], |
| 26 | + bgr_to_rgb=True, |
| 27 | + pad_size_divisor=32), |
| 28 | + backbone=dict( |
| 29 | + type='mmdet.ResNet', |
| 30 | + depth=50, |
| 31 | + base_channels=16, # to make it consistent with mink resnet |
| 32 | + num_stages=4, |
| 33 | + out_indices=(0, 1, 2, 3), |
| 34 | + frozen_stages=1, |
| 35 | + norm_cfg=dict(type='BN', requires_grad=False), |
| 36 | + norm_eval=True, |
| 37 | + init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), |
| 38 | + style='pytorch'), |
| 39 | + backbone_lidar=dict(type='MinkResNet', in_channels=3, depth=34), |
| 40 | + use_xyz_feat=True, |
| 41 | + # change due to no img feature fusion |
| 42 | + neck_3d=dict(type='MinkNeck', |
| 43 | + num_classes=1, |
| 44 | + in_channels=[128, 256, 512, 1024], |
| 45 | + out_channels=256, |
| 46 | + voxel_size=0.01, |
| 47 | + pts_prune_threshold=1000), |
| 48 | + decoder=dict( |
| 49 | + num_layers=6, |
| 50 | + return_intermediate=True, |
| 51 | + layer_cfg=dict( |
| 52 | + # query self attention layer |
| 53 | + self_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), |
| 54 | + # cross attention layer query to text |
| 55 | + cross_attn_text_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), |
| 56 | + # cross attention layer query to image |
| 57 | + cross_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), |
| 58 | + ffn_cfg=dict(embed_dims=256, |
| 59 | + feedforward_channels=2048, |
| 60 | + ffn_drop=0.0)), |
| 61 | + post_norm_cfg=None), |
| 62 | + bbox_head=dict(type='GroundingHead', |
| 63 | + num_classes=256, |
| 64 | + sync_cls_avg_factor=True, |
| 65 | + decouple_bbox_loss=True, |
| 66 | + decouple_groups=4, |
| 67 | + share_pred_layer=True, |
| 68 | + decouple_weights=[0.2, 0.2, 0.2, 0.4], |
| 69 | + contrastive_cfg=dict(max_text_len=256, |
| 70 | + log_scale='auto', |
| 71 | + bias=True), |
| 72 | + loss_cls=dict(type='mmdet.FocalLoss', |
| 73 | + use_sigmoid=True, |
| 74 | + gamma=2.0, |
| 75 | + alpha=0.25, |
| 76 | + loss_weight=1.0), |
| 77 | + loss_bbox=dict(type='BBoxCDLoss', |
| 78 | + mode='l1', |
| 79 | + loss_weight=1.0, |
| 80 | + group='g8')), |
| 81 | + coord_type='DEPTH', |
| 82 | + # training and testing settings |
| 83 | + train_cfg=dict(assigner=dict(type='HungarianAssigner3D', |
| 84 | + match_costs=[ |
| 85 | + dict(type='BinaryFocalLossCost', |
| 86 | + weight=1.0), |
| 87 | + dict(type='BBox3DL1Cost', weight=2.0), |
| 88 | + dict(type='IoU3DCost', weight=2.0) |
| 89 | + ]), ), |
| 90 | + test_cfg=None) |
| 91 | + |
| 92 | +dataset_type = 'MultiView3DGroundingDataset' |
| 93 | +data_root = 'data' |
| 94 | + |
| 95 | +train_pipeline = [ |
| 96 | + dict(type='LoadAnnotations3D'), |
| 97 | + dict(type='MultiViewPipeline', |
| 98 | + n_images=20, |
| 99 | + transforms=[ |
| 100 | + dict(type='LoadImageFromFile', backend_args=backend_args), |
| 101 | + dict(type='LoadDepthFromFile', backend_args=backend_args), |
| 102 | + dict(type='ConvertRGBDToPoints', coord_type='CAMERA'), |
| 103 | + dict(type='PointSample', num_points=n_points // 10), |
| 104 | + dict(type='Resize', scale=(480, 480), keep_ratio=False) |
| 105 | + ]), |
| 106 | + dict(type='AggregateMultiViewPoints', coord_type='DEPTH'), |
| 107 | + dict(type='PointSample', num_points=n_points), |
| 108 | + dict(type='GlobalRotScaleTrans', |
| 109 | + rot_range=[-0.087266, 0.087266], |
| 110 | + scale_ratio_range=[.9, 1.1], |
| 111 | + translation_std=[.1, .1, .1], |
| 112 | + shift_height=False), |
| 113 | + dict(type='Pack3DDetInputs', |
| 114 | + keys=['img', 'points', 'gt_bboxes_3d', 'gt_labels_3d']) |
| 115 | +] |
| 116 | +test_pipeline = [ |
| 117 | + dict(type='LoadAnnotations3D'), |
| 118 | + dict(type='MultiViewPipeline', |
| 119 | + n_images=50, |
| 120 | + ordered=True, |
| 121 | + transforms=[ |
| 122 | + dict(type='LoadImageFromFile', backend_args=backend_args), |
| 123 | + dict(type='LoadDepthFromFile', backend_args=backend_args), |
| 124 | + dict(type='ConvertRGBDToPoints', coord_type='CAMERA'), |
| 125 | + dict(type='PointSample', num_points=n_points // 10), |
| 126 | + dict(type='Resize', scale=(480, 480), keep_ratio=False) |
| 127 | + ]), |
| 128 | + dict(type='AggregateMultiViewPoints', coord_type='DEPTH'), |
| 129 | + dict(type='PointSample', num_points=n_points), |
| 130 | + dict(type='Pack3DDetInputs', |
| 131 | + keys=['img', 'points', 'gt_bboxes_3d', 'gt_labels_3d']) |
| 132 | +] |
| 133 | + |
| 134 | +# TODO: to determine a reasonable batch size |
| 135 | +train_dataloader = dict( |
| 136 | + batch_size=12, |
| 137 | + num_workers=12, |
| 138 | + persistent_workers=True, |
| 139 | + sampler=dict(type='DefaultSampler', shuffle=True), |
| 140 | + dataset=dict(type='RepeatDataset', |
| 141 | + times=1, |
| 142 | + dataset=dict(type=dataset_type, |
| 143 | + data_root=data_root, |
| 144 | + ann_file='embodiedscan_infos_train.pkl', |
| 145 | + vg_file='embodiedscan_train_full_vg.json', |
| 146 | + metainfo=metainfo, |
| 147 | + pipeline=train_pipeline, |
| 148 | + test_mode=False, |
| 149 | + filter_empty_gt=True, |
| 150 | + box_type_3d='Euler-Depth'))) |
| 151 | + |
| 152 | +val_dataloader = dict(batch_size=12, |
| 153 | + num_workers=12, |
| 154 | + persistent_workers=True, |
| 155 | + drop_last=False, |
| 156 | + sampler=dict(type='DefaultSampler', shuffle=False), |
| 157 | + dataset=dict(type=dataset_type, |
| 158 | + data_root=data_root, |
| 159 | + ann_file='embodiedscan_infos_val.pkl', |
| 160 | + vg_file='embodiedscan_val_full_vg.json', |
| 161 | + metainfo=metainfo, |
| 162 | + pipeline=test_pipeline, |
| 163 | + test_mode=True, |
| 164 | + filter_empty_gt=True, |
| 165 | + box_type_3d='Euler-Depth')) |
| 166 | +test_dataloader = val_dataloader |
| 167 | + |
| 168 | +val_evaluator = dict(type='GroundingMetric') |
| 169 | +test_evaluator = val_evaluator |
| 170 | + |
| 171 | +# training schedule for 1x |
| 172 | +train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=3) |
| 173 | +val_cfg = dict(type='ValLoop') |
| 174 | +test_cfg = dict(type='TestLoop') |
| 175 | + |
| 176 | +# optimizer |
| 177 | +lr = 5e-4 |
| 178 | +optim_wrapper = dict(type='OptimWrapper', |
| 179 | + optimizer=dict(type='AdamW', lr=lr, weight_decay=0.0005), |
| 180 | + paramwise_cfg=dict( |
| 181 | + custom_keys={ |
| 182 | + 'text_encoder': dict(lr_mult=0.0), |
| 183 | + 'decoder': dict(lr_mult=0.1, decay_mult=1.0) |
| 184 | + }), |
| 185 | + clip_grad=dict(max_norm=10, norm_type=2)) |
| 186 | + |
| 187 | +# learning rate |
| 188 | +param_scheduler = dict(type='MultiStepLR', |
| 189 | + begin=0, |
| 190 | + end=12, |
| 191 | + by_epoch=True, |
| 192 | + milestones=[8, 11], |
| 193 | + gamma=0.1) |
| 194 | + |
| 195 | +custom_hooks = [dict(type='EmptyCacheHook', after_iter=True)] |
| 196 | + |
| 197 | +# hooks |
| 198 | +default_hooks = dict( |
| 199 | + checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) |
| 200 | + |
| 201 | +# vis_backends = [ |
| 202 | +# dict(type='TensorboardVisBackend'), |
| 203 | +# dict(type='LocalVisBackend') |
| 204 | +# ] |
| 205 | +# visualizer = dict( |
| 206 | +# type='Det3DLocalVisualizer', |
| 207 | +# vis_backends=vis_backends, name='visualizer') |
| 208 | + |
| 209 | +find_unused_parameters = True |
| 210 | +load_from = '/mnt/petrelfs/wangtai/EmbodiedScan/work_dirs/mv-3ddet-challenge/epoch_12.pth' # noqa |
0 commit comments