-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathdaxpy.py
executable file
·58 lines (43 loc) · 977 Bytes
/
daxpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/python
import os
import sys
import time
import numpy
from numpy.random import randn
from scipy.linalg.blas import daxpy
def run_daxpy(N,l):
x = randn(N).astype('float64')
y = randn(N).astype('float64')
start = time.time();
for i in range(0,l):
y = daxpy(x,y, a=2.0 )
end = time.time()
timediff = (end -start)
mflops = ( 2*N ) *l / timediff
mflops *= 1e-6
size = "%d" % (N)
print("%14s :\t%20f MFlops\t%20f sec" % (size,mflops,timediff))
if __name__ == "__main__":
N=128
NMAX=2048
NINC=128
LOOPS=1
z=0
for arg in sys.argv:
if z == 1:
N = int(arg)
elif z == 2:
NMAX = int(arg)
elif z == 3:
NINC = int(arg)
elif z == 4:
LOOPS = int(arg)
z = z + 1
if 'OPENBLAS_LOOPS' in os.environ:
p = os.environ['OPENBLAS_LOOPS']
if p:
LOOPS = int(p);
print("From: %d To: %d Step=%d Loops=%d" % (N, NMAX, NINC, LOOPS))
print("\tSIZE\t\t\tFlops\t\t\t\t\tTime")
for i in range (N,NMAX+NINC,NINC):
run_daxpy(i,LOOPS)