-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathdpbtrf.c
159 lines (136 loc) · 5.08 KB
/
dpbtrf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#include "relapack.h"
#include "stdlib.h"
static void RELAPACK_dpbtrf_rec(const char *, const blasint *, const blasint *,
double *, const blasint *, double *, const blasint *, blasint *);
/** DPBTRF computes the Cholesky factorization of a real symmetric positive definite band matrix A.
*
* This routine is functionally equivalent to LAPACK's dpbtrf.
* For details on its interface, see
* http://www.netlib.org/lapack/explore-html/df/da9/dpbtrf_8f.html
* */
void RELAPACK_dpbtrf(
const char *uplo, const blasint *n, const blasint *kd,
double *Ab, const blasint *ldAb,
blasint *info
) {
// Check arguments
const blasint lower = LAPACK(lsame)(uplo, "L");
const blasint upper = LAPACK(lsame)(uplo, "U");
*info = 0;
if (!lower && !upper)
*info = -1;
else if (*n < 0)
*info = -2;
else if (*kd < 0)
*info = -3;
else if (*ldAb < *kd + 1)
*info = -5;
if (*info) {
const blasint minfo = -*info;
LAPACK(xerbla)("DPBTRF", &minfo, strlen("DPBTRF"));
return;
}
if (*n == 0) return;
// Clean char * arguments
const char cleanuplo = lower ? 'L' : 'U';
// Constant
const double ZERO[] = { 0. };
// Allocate work space
const blasint n1 = DREC_SPLIT(*n);
const blasint mWork = abs((*kd > n1) ? (lower ? *n - *kd : n1) : *kd);
const blasint nWork = abs((*kd > n1) ? (lower ? n1 : *n - *kd) : *kd);
double *Work = malloc(mWork * nWork * sizeof(double));
LAPACK(dlaset)(uplo, &mWork, &nWork, ZERO, ZERO, Work, &mWork);
// Recursive kernel
RELAPACK_dpbtrf_rec(&cleanuplo, n, kd, Ab, ldAb, Work, &mWork, info);
// Free work space
free(Work);
}
/** dpbtrf's recursive compute kernel */
static void RELAPACK_dpbtrf_rec(
const char *uplo, const blasint *n, const blasint *kd,
double *Ab, const blasint *ldAb,
double *Work, const blasint *ldWork,
blasint *info
){
if (*n <= MAX(CROSSOVER_DPBTRF, 1) || *ldAb == 1) {
// Unblocked
LAPACK(dpbtf2)(uplo, n, kd, Ab, ldAb, info);
return;
}
// Constants
const double ONE[] = { 1. };
const double MONE[] = { -1. };
// Unskew A
const blasint ldA[] = { *ldAb - 1 };
double *const A = Ab + ((*uplo == 'L') ? 0 : *kd);
// Splitting
const blasint n1 = MIN(DREC_SPLIT(*n), *kd);
const blasint n2 = *n - n1;
// * *
// * Ab_BR
double *const Ab_BR = Ab + *ldAb * n1;
// A_TL A_TR
// A_BL A_BR
double *const A_TL = A;
double *const A_TR = A + *ldA * n1;
double *const A_BL = A + n1;
double *const A_BR = A + *ldA * n1 + n1;
// recursion(A_TL)
RELAPACK_dpotrf(uplo, &n1, A_TL, ldA, info);
if (*info)
return;
// Banded splitting
const blasint n21 = MIN(n2, *kd - n1);
const blasint n22 = MIN(n2 - n21, n1);
// n1 n21 n22
// n1 * A_TRl A_TRr
// n21 A_BLt A_BRtl A_BRtr
// n22 A_BLb A_BRbl A_BRbr
double *const A_TRl = A_TR;
double *const A_TRr = A_TR + *ldA * n21;
double *const A_BLt = A_BL;
double *const A_BLb = A_BL + n21;
double *const A_BRtl = A_BR;
double *const A_BRtr = A_BR + *ldA * n21;
double *const A_BRbl = A_BR + n21;
double *const A_BRbr = A_BR + *ldA * n21 + n21;
if (*uplo == 'L') {
// A_BLt = ABLt / A_TL'
BLAS(dtrsm)("R", "L", "T", "N", &n21, &n1, ONE, A_TL, ldA, A_BLt, ldA);
// A_BRtl = A_BRtl - A_BLt * A_BLt'
BLAS(dsyrk)("L", "N", &n21, &n1, MONE, A_BLt, ldA, ONE, A_BRtl, ldA);
// Work = A_BLb
LAPACK(dlacpy)("U", &n22, &n1, A_BLb, ldA, Work, ldWork);
// Work = Work / A_TL'
BLAS(dtrsm)("R", "L", "T", "N", &n22, &n1, ONE, A_TL, ldA, Work, ldWork);
// A_BRbl = A_BRbl - Work * A_BLt'
BLAS(dgemm)("N", "T", &n22, &n21, &n1, MONE, Work, ldWork, A_BLt, ldA, ONE, A_BRbl, ldA);
// A_BRbr = A_BRbr - Work * Work'
BLAS(dsyrk)("L", "N", &n22, &n1, MONE, Work, ldWork, ONE, A_BRbr, ldA);
// A_BLb = Work
LAPACK(dlacpy)("U", &n22, &n1, Work, ldWork, A_BLb, ldA);
} else {
// A_TRl = A_TL' \ A_TRl
BLAS(dtrsm)("L", "U", "T", "N", &n1, &n21, ONE, A_TL, ldA, A_TRl, ldA);
// A_BRtl = A_BRtl - A_TRl' * A_TRl
BLAS(dsyrk)("U", "T", &n21, &n1, MONE, A_TRl, ldA, ONE, A_BRtl, ldA);
// Work = A_TRr
LAPACK(dlacpy)("L", &n1, &n22, A_TRr, ldA, Work, ldWork);
// Work = A_TL' \ Work
BLAS(dtrsm)("L", "U", "T", "N", &n1, &n22, ONE, A_TL, ldA, Work, ldWork);
// A_BRtr = A_BRtr - A_TRl' * Work
BLAS(dgemm)("T", "N", &n21, &n22, &n1, MONE, A_TRl, ldA, Work, ldWork, ONE, A_BRtr, ldA);
// A_BRbr = A_BRbr - Work' * Work
BLAS(dsyrk)("U", "T", &n22, &n1, MONE, Work, ldWork, ONE, A_BRbr, ldA);
// A_TRr = Work
LAPACK(dlacpy)("L", &n1, &n22, Work, ldWork, A_TRr, ldA);
}
// recursion(A_BR)
if (*kd > n1 && ldA != 0)
RELAPACK_dpotrf(uplo, &n2, A_BR, ldA, info);
else
RELAPACK_dpbtrf_rec(uplo, &n2, kd, Ab_BR, ldAb, Work, ldWork, info);
if (*info)
*info += n1;
}