-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathotter_pt2otter_hf.py
144 lines (120 loc) · 4.97 KB
/
otter_pt2otter_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""convert from otter pt to otter hf. Will remove after we use otter hf model to train.
"""
import re
import argparse
import os
import torch
import torch.nn as nn
from transformers import CLIPVisionModel, LlamaForCausalLM, LlamaTokenizer
from .modeling_otter import (
OtterPreTrainedModel,
OtterLMMixin,
extend_instance,
_infer_decoder_layers_attr_name,
OtterPerceiverResampler,
)
from .configuration_otter import OtterConfig
def rename_old_checkpoint(old_ckpt: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
"""Rename some keys in the old checkpoint"""
perceiver_pattern1 = re.compile(r"perceiver\.layers\.[0-9]\.0")
perceiver_pattern2 = re.compile(r"perceiver\.layers\.[0-9]\.1")
new_ckpt = old_ckpt.copy()
for key, value in old_ckpt.items():
if re.match(perceiver_pattern1, key):
new_key = re.sub(r"([0-9])\.0", r"\1", key)
new_ckpt.pop(key)
new_ckpt[new_key] = value
elif re.match(perceiver_pattern2, key):
new_key = re.sub(r"([0-9])\.1", r"\1.feed_forward", key)
new_ckpt.pop(key)
new_ckpt[new_key] = value
elif key.startswith("lang_encoder.gated_cross_attn_layers."):
new_ckpt.pop(key)
elif key.startswith("lang_encoder.") and "ff_gate" not in key:
new_key = key.replace("ff", "feed_forward")
new_ckpt.pop(key)
new_ckpt[new_key] = value
return new_ckpt
class OtterModel(OtterPreTrainedModel):
config_class = OtterConfig
def __init__(
self,
config: OtterConfig,
):
super().__init__(config)
text_tokenizer = LlamaTokenizer.from_pretrained(
config.text_config._name_or_path
)
lang_encoder = LlamaForCausalLM.from_pretrained(
config.text_config._name_or_path
)
vision_encoder = CLIPVisionModel.from_pretrained(
config.vision_config._name_or_path
)
text_tokenizer.add_special_tokens(
{"additional_special_tokens": ["<|endofchunk|>", "<image>", "<answer>"]}
)
if text_tokenizer.pad_token is None:
text_tokenizer.add_special_tokens({"pad_token": "<PAD>"})
self.text_tokenizer = text_tokenizer
self.eoc_token_id = text_tokenizer.encode("<|endofchunk|>")[-1]
self.media_token_id = text_tokenizer.encode("<image>")[-1]
extend_instance(lang_encoder, OtterLMMixin)
decoder_layers_attr_name = _infer_decoder_layers_attr_name(lang_encoder)
lang_encoder.set_decoder_layers_attr_name(decoder_layers_attr_name)
lang_encoder.resize_token_embeddings(len(text_tokenizer))
self.lang_encoder = lang_encoder
self.cross_attn_every_n_layers = config.cross_attn_every_n_layers
self.use_media_placement_augmentation = config.use_media_placement_augmentation
self.only_attend_previous = config.only_attend_previous
vision_encoder.output_tokens = True
self.vision_encoder = vision_encoder
self.vis_dim = 1024
self.perceiver = OtterPerceiverResampler(dim=self.vis_dim)
print(self.only_attend_previous)
self.lang_encoder.init_otter(
media_token_id=self.media_token_id,
vis_hidden_size=self.vis_dim,
cross_attn_every_n_layers=self.cross_attn_every_n_layers,
use_media_placement_augmentation=self.use_media_placement_augmentation,
only_attend_previous=self.only_attend_previous,
)
def get_input_embeddings(self) -> nn.Module:
return self.lang_encoder.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.lang_encoder.set_input_embeddings(new_embeddings)
def get_output_embeddings(self) -> nn.Module:
return self.lang_encoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.lang_encoder.set_output_embeddings(new_embeddings)
@torch.no_grad()
def dump_hf_model(old_ckpt_path: str, new_folder_path: str) -> None:
old_ckpt = torch.load(old_ckpt_path, map_location="cpu")
if old_ckpt.get("model", None) is not None:
old_ckpt = old_ckpt["model"]
new_ckpt = rename_old_checkpoint(old_ckpt)
config = OtterConfig.from_json_file("otter/config.json")
model = OtterModel(config)
model.load_state_dict(new_ckpt, strict=False)
print(f"Saving HF model to {new_folder_path}")
model.save_pretrained(new_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--old_ckpt_path",
"-old",
type=str,
required=True,
help="Path to the pt checkpoint",
)
parser.add_argument(
"--new_hf_path",
"-new",
type=str,
required=True,
help="Path to the hf folder",
)
args = parser.parse_args()
if not os.path.exists(os.path.dirname(args.new_hf_path)):
os.makedirs(os.path.dirname(args.new_hf_path))
dump_hf_model(args.old_ckpt_path, args.new_hf_path)