-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathflamingo_pt2otter_hf.py
150 lines (126 loc) · 5.23 KB
/
flamingo_pt2otter_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
""" convert from open flamingo pt to otter hf, as the starting point for ICI training
"""
import re
import argparse
import os
import torch
import torch.nn as nn
from transformers import CLIPVisionModel, LlamaForCausalLM, LlamaTokenizer
from otter.modeling_otter import (
OtterPreTrainedModel,
OtterLMMixin,
extend_instance,
_infer_decoder_layers_attr_name,
OtterPerceiverResampler,
)
from otter.configuration_otter import OtterConfig
class OtterModel(OtterPreTrainedModel):
# We need to download the llaMA and CLIP here, and the model does not have the <answer> when init
config_class = OtterConfig
def __init__(
self,
config: OtterConfig,
):
super().__init__(config)
text_tokenizer = LlamaTokenizer.from_pretrained(
config.text_config._name_or_path
)
lang_encoder = LlamaForCausalLM.from_pretrained(
config.text_config._name_or_path
)
vision_encoder = CLIPVisionModel.from_pretrained(
config.vision_config._name_or_path
)
text_tokenizer.add_special_tokens(
{"additional_special_tokens": ["<|endofchunk|>", "<image>"]}
)
if text_tokenizer.pad_token is None:
text_tokenizer.add_special_tokens({"pad_token": "<PAD>"})
self.text_tokenizer = text_tokenizer
self.eoc_token_id = text_tokenizer.encode("<|endofchunk|>")[-1]
self.media_token_id = text_tokenizer.encode("<image>")[-1]
extend_instance(lang_encoder, OtterLMMixin)
decoder_layers_attr_name = _infer_decoder_layers_attr_name(lang_encoder)
lang_encoder.set_decoder_layers_attr_name(decoder_layers_attr_name)
lang_encoder.resize_token_embeddings(len(text_tokenizer))
self.lang_encoder = lang_encoder
self.cross_attn_every_n_layers = config.cross_attn_every_n_layers
self.use_media_placement_augmentation = config.use_media_placement_augmentation
self.only_attend_previous = config.only_attend_previous
vision_encoder.output_tokens = True
self.vision_encoder = vision_encoder
self.vis_dim = 1024
self.perceiver = OtterPerceiverResampler(dim=self.vis_dim)
self.lang_encoder.init_otter(
media_token_id=self.media_token_id,
vis_hidden_size=self.vis_dim,
cross_attn_every_n_layers=self.cross_attn_every_n_layers,
use_media_placement_augmentation=self.use_media_placement_augmentation,
only_attend_previous=self.only_attend_previous,
)
def get_input_embeddings(self) -> nn.Module:
return self.lang_encoder.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.lang_encoder.set_input_embeddings(new_embeddings)
def get_output_embeddings(self) -> nn.Module:
return self.lang_encoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.lang_encoder.set_output_embeddings(new_embeddings)
def rename_flamingo_checkpoint(
old_ckpt: dict[str, torch.Tensor]
) -> dict[str, torch.Tensor]:
"""Rename some keys in the public flamingo checkpoint"""
perceiver_pattern1 = re.compile(r"perceiver\.layers\.[0-9]\.0")
perceiver_pattern2 = re.compile(r"perceiver\.layers\.[0-9]\.1")
new_ckpt = old_ckpt.copy()
for key, value in old_ckpt.items():
if re.match(perceiver_pattern1, key):
new_key = re.sub(r"([0-9])\.0", r"\1", key)
new_ckpt.pop(key)
new_ckpt[new_key] = value
elif re.match(perceiver_pattern2, key):
new_key = re.sub(r"([0-9])\.1", r"\1.feed_forward", key)
new_ckpt.pop(key)
new_ckpt[new_key] = value
elif key.startswith("lang_encoder.gated_cross_attn_layers."):
new_ckpt.pop(key)
elif key.startswith("lang_encoder.") and "ff_gate" not in key:
new_key = key.replace("ff", "feed_forward")
new_ckpt.pop(key)
new_ckpt[new_key] = value
return new_ckpt
@torch.no_grad()
def dump_hf_model(old_ckpt_path: str, new_folder_path: str) -> None:
os.makedirs(new_folder_path, exist_ok=True)
old_ckpt = torch.load(old_ckpt_path, map_location="cpu")
if old_ckpt.get("model", None) is not None:
old_ckpt = old_ckpt["model"]
config = OtterConfig.from_json_file("otter/config.json")
model = OtterModel(config)
new_ckpt = rename_flamingo_checkpoint(old_ckpt)
model.load_state_dict(new_ckpt, strict=False)
text_tokenizer = model.text_tokenizer
text_tokenizer.add_special_tokens(
{"additional_special_tokens": ["<|endofchunk|>", "<image>", "<answer>"]}
)
model.lang_encoder.resize_token_embeddings(len(text_tokenizer))
print(f"Saving HF model to {new_folder_path}")
model.save_pretrained(new_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--old_ckpt_path",
"-old",
type=str,
required=True,
help="Path to the Open Flamingo checkpoint",
)
parser.add_argument(
"--new_hf_path",
"-new",
type=str,
required=True,
help="Path to the HF folder",
)
args = parser.parse_args()
dump_hf_model(args.old_ckpt_path, args.new_hf_path)