|
62 | 62 |
|
63 | 63 | <!-- 这里可写通用的实现逻辑 -->
|
64 | 64 |
|
| 65 | +**方法一:动态规划** |
| 66 | + |
| 67 | +我们定义 $f[i][j]$ 表示前 $i+1$ 栋房子,安排了 $j$ 个邮筒时,每栋房子与离它最近的邮筒之间的距离的最小总和。初始时 $f[i][j]=\infty$,答案即为 $f[n-1][k]$。 |
| 68 | + |
| 69 | +我们可以枚举第 $j-1$ 个邮筒“管辖”的最后一栋房子 $p$,即 $0 \leq p \leq i-1$,那么第 $j$ 个邮筒“管辖”的房子就是 $[p+1,..i]$,我们记 $g[i][j]$ 表示给房子 $[i,..j]$ 安排一个邮筒的最小总和,那么有状态转移方程: |
| 70 | + |
| 71 | +$$ |
| 72 | +f[i][j] = \min_{0 \leq p \leq i-1} \{f[p][j-1] + g[p+1][i]\} |
| 73 | +$$ |
| 74 | + |
| 75 | +其中 $g[i][j]$ 的计算方法如下: |
| 76 | + |
| 77 | +$$ |
| 78 | +g[i][j] = g[i + 1][j - 1] + houses[j] - houses[i] |
| 79 | +$$ |
| 80 | + |
| 81 | +时间复杂度 $O(n^2 \times k)$,空间复杂度 $O(n^2)$。其中 $n$ 为房子的数量。 |
| 82 | + |
65 | 83 | <!-- tabs:start -->
|
66 | 84 |
|
67 | 85 | ### **Python3**
|
68 | 86 |
|
69 | 87 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
70 | 88 |
|
71 | 89 | ```python
|
72 |
| - |
| 90 | +class Solution: |
| 91 | + def minDistance(self, houses: List[int], k: int) -> int: |
| 92 | + houses.sort() |
| 93 | + n = len(houses) |
| 94 | + g = [[0] * n for _ in range(n)] |
| 95 | + for i in range(n - 2, -1, -1): |
| 96 | + for j in range(i + 1, n): |
| 97 | + g[i][j] = g[i + 1][j - 1] + houses[j] - houses[i] |
| 98 | + f = [[inf] * (k + 1) for _ in range(n)] |
| 99 | + for i in range(n): |
| 100 | + f[i][1] = g[0][i] |
| 101 | + for j in range(2, min(k + 1, i + 2)): |
| 102 | + for p in range(i): |
| 103 | + f[i][j] = min(f[i][j], f[p][j - 1] + g[p + 1][i]) |
| 104 | + return f[-1][k] |
73 | 105 | ```
|
74 | 106 |
|
75 | 107 | ### **Java**
|
76 | 108 |
|
77 | 109 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
78 | 110 |
|
79 | 111 | ```java
|
| 112 | +class Solution { |
| 113 | + public int minDistance(int[] houses, int k) { |
| 114 | + Arrays.sort(houses); |
| 115 | + int n = houses.length; |
| 116 | + int[][] g = new int[n][n]; |
| 117 | + for (int i = n - 2; i >= 0; --i) { |
| 118 | + for (int j = i + 1; j < n; ++j) { |
| 119 | + g[i][j] = g[i + 1][j - 1] + houses[j] - houses[i]; |
| 120 | + } |
| 121 | + } |
| 122 | + int[][] f = new int[n][k + 1]; |
| 123 | + final int inf = 1 << 30; |
| 124 | + for (int[] e : f) { |
| 125 | + Arrays.fill(e, inf); |
| 126 | + } |
| 127 | + for (int i = 0; i < n; ++i) { |
| 128 | + f[i][1] = g[0][i]; |
| 129 | + for (int j = 2; j <= k && j <= i + 1; ++j) { |
| 130 | + for (int p = 0; p < i; ++p) { |
| 131 | + f[i][j] = Math.min(f[i][j], f[p][j - 1] + g[p + 1][i]); |
| 132 | + } |
| 133 | + } |
| 134 | + } |
| 135 | + return f[n - 1][k]; |
| 136 | + } |
| 137 | +} |
| 138 | +``` |
| 139 | + |
| 140 | +### **C++** |
| 141 | + |
| 142 | +```cpp |
| 143 | +class Solution { |
| 144 | +public: |
| 145 | + int minDistance(vector<int>& houses, int k) { |
| 146 | + int n = houses.size(); |
| 147 | + sort(houses.begin(), houses.end()); |
| 148 | + int g[n][n]; |
| 149 | + memset(g, 0, sizeof(g)); |
| 150 | + for (int i = n - 2; ~i; --i) { |
| 151 | + for (int j = i + 1; j < n; ++j) { |
| 152 | + g[i][j] = g[i + 1][j - 1] + houses[j] - houses[i]; |
| 153 | + } |
| 154 | + } |
| 155 | + int f[n][k + 1]; |
| 156 | + memset(f, 0x3f, sizeof(f)); |
| 157 | + for (int i = 0; i < n; ++i) { |
| 158 | + f[i][1] = g[0][i]; |
| 159 | + for (int j = 1; j <= k && j <= i + 1; ++j) { |
| 160 | + for (int p = 0; p < i; ++p) { |
| 161 | + f[i][j] = min(f[i][j], f[p][j - 1] + g[p + 1][i]); |
| 162 | + } |
| 163 | + } |
| 164 | + } |
| 165 | + return f[n - 1][k]; |
| 166 | + } |
| 167 | +}; |
| 168 | +``` |
80 | 169 |
|
| 170 | +### **Go** |
| 171 | +
|
| 172 | +```go |
| 173 | +func minDistance(houses []int, k int) int { |
| 174 | + sort.Ints(houses) |
| 175 | + n := len(houses) |
| 176 | + g := make([][]int, n) |
| 177 | + f := make([][]int, n) |
| 178 | + const inf = 1 << 30 |
| 179 | + for i := range g { |
| 180 | + g[i] = make([]int, n) |
| 181 | + f[i] = make([]int, k+1) |
| 182 | + for j := range f[i] { |
| 183 | + f[i][j] = inf |
| 184 | + } |
| 185 | + } |
| 186 | + for i := n - 2; i >= 0; i-- { |
| 187 | + for j := i + 1; j < n; j++ { |
| 188 | + g[i][j] = g[i+1][j-1] + houses[j] - houses[i] |
| 189 | + } |
| 190 | + } |
| 191 | + for i := 0; i < n; i++ { |
| 192 | + f[i][1] = g[0][i] |
| 193 | + for j := 2; j <= k && j <= i+1; j++ { |
| 194 | + for p := 0; p < i; p++ { |
| 195 | + f[i][j] = min(f[i][j], f[p][j-1]+g[p+1][i]) |
| 196 | + } |
| 197 | + } |
| 198 | + } |
| 199 | + return f[n-1][k] |
| 200 | +} |
| 201 | +
|
| 202 | +func min(a, b int) int { |
| 203 | + if a < b { |
| 204 | + return a |
| 205 | + } |
| 206 | + return b |
| 207 | +} |
81 | 208 | ```
|
82 | 209 |
|
83 | 210 | ### **...**
|
|
0 commit comments