forked from leoxiaobin/deep-high-resolution-net.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
299 lines (249 loc) · 10.1 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import csv
import os
import shutil
from PIL import Image
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision
import cv2
import numpy as np
import _init_paths
import models
from config import cfg
from config import update_config
from core.function import get_final_preds
from utils.transforms import get_affine_transform
COCO_KEYPOINT_INDEXES = {
0: 'nose',
1: 'left_eye',
2: 'right_eye',
3: 'left_ear',
4: 'right_ear',
5: 'left_shoulder',
6: 'right_shoulder',
7: 'left_elbow',
8: 'right_elbow',
9: 'left_wrist',
10: 'right_wrist',
11: 'left_hip',
12: 'right_hip',
13: 'left_knee',
14: 'right_knee',
15: 'left_ankle',
16: 'right_ankle'
}
COCO_INSTANCE_CATEGORY_NAMES = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
def get_person_detection_boxes(model, img, threshold=0.5):
pil_image = Image.fromarray(img) # Load the image
transform = transforms.Compose([transforms.ToTensor()]) # Defing PyTorch Transform
transformed_img = transform(pil_image) # Apply the transform to the image
pred = model([transformed_img]) # Pass the image to the model
pred_classes = [COCO_INSTANCE_CATEGORY_NAMES[i]
for i in list(pred[0]['labels'].numpy())] # Get the Prediction Score
pred_boxes = [[(i[0], i[1]), (i[2], i[3])]
for i in list(pred[0]['boxes'].detach().numpy())] # Bounding boxes
pred_score = list(pred[0]['scores'].detach().numpy())
if not pred_score:
return []
# Get list of index with score greater than threshold
pred_t = [pred_score.index(x) for x in pred_score if x > threshold][-1]
pred_boxes = pred_boxes[:pred_t+1]
pred_classes = pred_classes[:pred_t+1]
person_boxes = []
for idx, box in enumerate(pred_boxes):
if pred_classes[idx] == 'person':
person_boxes.append(box)
return person_boxes
def get_pose_estimation_prediction(pose_model, image, center, scale):
rotation = 0
# pose estimation transformation
trans = get_affine_transform(center, scale, rotation, cfg.MODEL.IMAGE_SIZE)
model_input = cv2.warpAffine(
image,
trans,
(int(cfg.MODEL.IMAGE_SIZE[0]), int(cfg.MODEL.IMAGE_SIZE[1])),
flags=cv2.INTER_LINEAR)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# pose estimation inference
model_input = transform(model_input).unsqueeze(0)
# switch to evaluate mode
pose_model.eval()
with torch.no_grad():
# compute output heatmap
output = pose_model(model_input)
preds, _ = get_final_preds(
cfg,
output.clone().cpu().numpy(),
np.asarray([center]),
np.asarray([scale]))
return preds
def box_to_center_scale(box, model_image_width, model_image_height):
"""convert a box to center,scale information required for pose transformation
Parameters
----------
box : list of tuple
list of length 2 with two tuples of floats representing
bottom left and top right corner of a box
model_image_width : int
model_image_height : int
Returns
-------
(numpy array, numpy array)
Two numpy arrays, coordinates for the center of the box and the scale of the box
"""
center = np.zeros((2), dtype=np.float32)
bottom_left_corner = box[0]
top_right_corner = box[1]
box_width = top_right_corner[0]-bottom_left_corner[0]
box_height = top_right_corner[1]-bottom_left_corner[1]
bottom_left_x = bottom_left_corner[0]
bottom_left_y = bottom_left_corner[1]
center[0] = bottom_left_x + box_width * 0.5
center[1] = bottom_left_y + box_height * 0.5
aspect_ratio = model_image_width * 1.0 / model_image_height
pixel_std = 200
if box_width > aspect_ratio * box_height:
box_height = box_width * 1.0 / aspect_ratio
elif box_width < aspect_ratio * box_height:
box_width = box_height * aspect_ratio
scale = np.array(
[box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std],
dtype=np.float32)
if center[0] != -1:
scale = scale * 1.25
return center, scale
def prepare_output_dirs(prefix='/output/'):
pose_dir = prefix+'poses/'
box_dir = prefix+'boxes/'
if os.path.exists(pose_dir) and os.path.isdir(pose_dir):
shutil.rmtree(pose_dir)
if os.path.exists(box_dir) and os.path.isdir(box_dir):
shutil.rmtree(box_dir)
os.makedirs(pose_dir, exist_ok=True)
os.makedirs(box_dir, exist_ok=True)
return pose_dir, box_dir
def parse_args():
parser = argparse.ArgumentParser(description='Train keypoints network')
# general
parser.add_argument('--cfg', type=str, required=True)
parser.add_argument('--videoFile', type=str, required=True)
parser.add_argument('--outputDir', type=str, default='/output/')
parser.add_argument('--inferenceFps', type=int, default=10)
parser.add_argument('--writeBoxFrames', action='store_true')
parser.add_argument('opts',
help='Modify config options using the command-line',
default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
# args expected by supporting codebase
args.modelDir = ''
args.logDir = ''
args.dataDir = ''
args.prevModelDir = ''
return args
def main():
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
args = parse_args()
update_config(cfg, args)
pose_dir, box_dir = prepare_output_dirs(args.outputDir)
csv_output_filename = args.outputDir+'pose-data.csv'
csv_output_rows = []
box_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
box_model.eval()
pose_model = eval('models.'+cfg.MODEL.NAME+'.get_pose_net')(
cfg, is_train=False
)
if cfg.TEST.MODEL_FILE:
print('=> loading model from {}'.format(cfg.TEST.MODEL_FILE))
pose_model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=False)
else:
print('expected model defined in config at TEST.MODEL_FILE')
pose_model = torch.nn.DataParallel(pose_model, device_ids=cfg.GPUS).cuda()
# Loading an video
vidcap = cv2.VideoCapture(args.videoFile)
fps = vidcap.get(cv2.CAP_PROP_FPS)
if fps < args.inferenceFps:
print('desired inference fps is '+str(args.inferenceFps)+' but video fps is '+str(fps))
exit()
every_nth_frame = round(fps/args.inferenceFps)
success, image_bgr = vidcap.read()
count = 0
while success:
if count % every_nth_frame != 0:
success, image_bgr = vidcap.read()
count += 1
continue
image = image_bgr[:, :, [2, 1, 0]]
count_str = str(count).zfill(32)
# object detection box
pred_boxes = get_person_detection_boxes(box_model, image, threshold=0.8)
if args.writeBoxFrames:
image_bgr_box = image_bgr.copy()
for box in pred_boxes:
cv2.rectangle(image_bgr_box, box[0], box[1], color=(0, 255, 0),
thickness=3) # Draw Rectangle with the coordinates
cv2.imwrite(box_dir+'box%s.jpg' % count_str, image_bgr_box)
if not pred_boxes:
success, image_bgr = vidcap.read()
count += 1
continue
# pose estimation
box = pred_boxes[0] # assume there is only 1 person
center, scale = box_to_center_scale(box, cfg.MODEL.IMAGE_SIZE[0], cfg.MODEL.IMAGE_SIZE[1])
image_pose = image.copy() if cfg.DATASET.COLOR_RGB else image_bgr.copy()
pose_preds = get_pose_estimation_prediction(pose_model, image_pose, center, scale)
new_csv_row = []
for _, mat in enumerate(pose_preds[0]):
x_coord, y_coord = int(mat[0]), int(mat[1])
cv2.circle(image_bgr, (x_coord, y_coord), 4, (255, 0, 0), 2)
new_csv_row.extend([x_coord, y_coord])
csv_output_rows.append(new_csv_row)
cv2.imwrite(pose_dir+'pose%s.jpg' % count_str, image_bgr)
# get next frame
success, image_bgr = vidcap.read()
count += 1
# write csv
csv_headers = ['frame']
for keypoint in COCO_KEYPOINT_INDEXES.values():
csv_headers.extend([keypoint+'_x', keypoint+'_y'])
with open(csv_output_filename, 'w', newline='') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(csv_headers)
csvwriter.writerows(csv_output_rows)
os.system("ffmpeg -y -r "
+ str(args.inferenceFps)
+ " -pattern_type glob -i '"
+ pose_dir
+ "/*.jpg' -c:v libx264 -vf fps="
+ str(args.inferenceFps)+" -pix_fmt yuv420p /output/movie.mp4")
if __name__ == '__main__':
main()