We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
1 parent 5e57143 commit fe3ab0dCopy full SHA for fe3ab0d
mglearn/datasets.py
@@ -1,10 +1,13 @@
1
import numpy as np
2
import pandas as pd
3
+import os
4
from scipy import signal
5
from sklearn.datasets import load_boston
6
from sklearn.preprocessing import MinMaxScaler, PolynomialFeatures
7
from .make_blobs import make_blobs
8
9
+DATA_FOLDER = os.path.join(os.path.dirname(__file__), "data")
10
+
11
12
def make_forge():
13
# a carefully hand-designed dataset lol
@@ -34,7 +37,7 @@ def load_extended_boston():
34
37
35
38
36
39
def load_citibike():
- data_mine = pd.read_csv("data/citibike.csv")
40
+ data_mine = pd.read_csv(os.path.join(DATA_FOLDER, "citibike.csv"))
41
data_mine['one'] = 1
42
data_mine['starttime'] = pd.to_datetime(data_mine.starttime)
43
data_starttime = data_mine.set_index("starttime")
0 commit comments