Skip to content

Commit 8151fa0

Browse files
Add P4D + GluonCV Demo03 File
Add P4D + GluonCV Demo03 File: Perform Image Classification.
1 parent f20743b commit 8151fa0

File tree

1 file changed

+39
-0
lines changed

1 file changed

+39
-0
lines changed
Lines changed: 39 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,39 @@
1+
import matplotlib.pyplot as plt
2+
3+
from mxnet import gluon, nd, image
4+
from mxnet.gluon.data.vision import transforms
5+
from gluoncv import utils
6+
from gluoncv.model_zoo import get_model
7+
8+
# Download and show the example image
9+
url = 'https://raw.githubusercontent.com/dmlc/web-data/master/gluoncv/classification/plane-draw.jpeg'
10+
im_fname = utils.download(url)
11+
12+
img = image.imread(im_fname)
13+
14+
plt.imshow(img.asnumpy())
15+
plt.show()
16+
17+
# Transform the image:
18+
transform_fn = transforms.Compose([
19+
transforms.Resize(32),
20+
transforms.CenterCrop(32),
21+
transforms.ToTensor(),
22+
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
23+
])
24+
25+
img = transform_fn(img)
26+
plt.imshow(nd.transpose(img, (1,2,0)).asnumpy())
27+
plt.show()
28+
29+
# Load a pre-trained model
30+
net = get_model('cifar_resnet110_v1', classes=10, pretrained=True)
31+
32+
# Finally, prepare the image and feed it to the model
33+
pred = net(img.expand_dims(axis=0))
34+
35+
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
36+
'dog', 'frog', 'horse', 'ship', 'truck']
37+
ind = nd.argmax(pred, axis=1).astype('int')
38+
print('The input picture is classified as [%s], with probability %.3f.'%
39+
(class_names[ind.asscalar()], nd.softmax(pred)[0][ind].asscalar()))

0 commit comments

Comments
 (0)