-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_statsmodels2.py
82 lines (65 loc) · 2.35 KB
/
demo_statsmodels2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
from scipy import stats
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.graphics.api import qqplot
# Sunspots Dataset Metadata
print(sm.datasets.sunspots.NOTE)
# Load Data
dta = sm.datasets.sunspots.load_pandas().data
# Plotting Sun Activity
dta.index = pd.Index(pd.date_range("1700", end="2009", freq="A-DEC"))
del dta["YEAR"]
dta.plot(figsize=(12,4));
# Plotting Autocorrelation and Partial Correlation
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(dta.values.squeeze(), lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(dta, lags=40, ax=ax2)
# Print Model Parameters
arma_mod20 = sm.tsa.statespace.SARIMAX(dta, order=(2,0,0), trend='c').fit(disp=False)
print(arma_mod20.aic, arma_mod20.bic, arma_mod20.hqic)
print(arma_mod20.params)
# Print Model Parameters
arma_mod30 = sm.tsa.statespace.SARIMAX(dta, order=(3,0,0), trend='c').fit(disp=False)
print(arma_mod30.aic, arma_mod30.bic, arma_mod30.hqic)
print(arma_mod30.params)
# Does our Model Obey the Theory?
## Calculate and Plot the Residuals
print(sm.stats.durbin_watson(arma_mod30.resid))
fig = plt.figure(figsize=(12,4))
ax = fig.add_subplot(111)
ax = plt.plot(arma_mod30.resid)
resid = arma_mod30.resid
print(stats.normaltest(resid))
fig = plt.figure(figsize=(12,4))
ax = fig.add_subplot(111)
fig = qqplot(resid, line='q', ax=ax, fit=True)
# Show Plots
plt.show()
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(resid, lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(resid, lags=40, ax=ax2)
# Show Plots
plt.show()
r,q,p = sm.tsa.acf(resid, fft=True, qstat=True)
data = np.c_[r[1:], q, p]
index = pd.Index(range(1,q.shape[0]+1), name="lag")
table = pd.DataFrame(data, columns=["AC", "Q", "Prob(>Q)"], index=index)
print(table)
# Create predictions
predict_sunspots = arma_mod30.predict(start='1990', end='2012', dynamic=True)
fig, ax = plt.subplots(figsize=(12, 8))
dta.loc['1950':].plot(ax=ax)
predict_sunspots.plot(ax=ax, style='r');
# Show Plots
plt.show()
# Calculate Mean Forecast Error
def mean_forecast_err(y, yhat):
return y.sub(yhat).mean()
# Mean Forecast Error
print(mean_forecast_err(dta.SUNACTIVITY, predict_sunspots))