-
Notifications
You must be signed in to change notification settings - Fork 314
/
Copy pathDetectPlates.py
235 lines (150 loc) · 10.1 KB
/
DetectPlates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# DetectPlates.py
import cv2
import numpy as np
import math
import Main
import random
import Preprocess
import DetectChars
import PossiblePlate
import PossibleChar
import Point
# module level variables ##########################################################################
PLATE_WIDTH_PADDING_FACTOR = 1.3
PLATE_HEIGHT_PADDING_FACTOR = 1.5
###################################################################################################
def detectPlatesInScene(imgOriginalScene):
listOfPossiblePlates = [] # this will be the return value
height, width, numChannels = imgOriginalScene.shape
imgGrayscaleScene = np.zeros((height, width, 1), np.uint8)
imgThreshScene = np.zeros((height, width, 1), np.uint8)
imgContours = np.zeros((height, width, 3), np.uint8)
cv2.destroyAllWindows()
if Main.showSteps == True: # show steps #######################################################
cv2.imshow("0", imgOriginalScene)
# end if # show steps #########################################################################
imgGrayscaleScene, imgThreshScene = Preprocess.preprocess(imgOriginalScene)
if Main.showSteps == True: # show steps #######################################################
cv2.imshow("1a", imgGrayscaleScene)
cv2.imshow("1b", imgThreshScene)
# end if # show steps #########################################################################
listOfPossibleCharsInScene = findPossibleCharsInScene(imgThreshScene)
if Main.showSteps == True: # show steps #######################################################
print "step 2 - len(listOfPossibleCharsInScene) = " + str(len(listOfPossibleCharsInScene)) + "\n" # 131 with MCLRNF1 image
imgContours = np.zeros((height, width, 3), np.uint8)
contours = []
for possibleChar in listOfPossibleCharsInScene:
contours.append(possibleChar)
# end for
cv2.drawContours(imgContours, contours, -1, Main.SCALAR_WHITE)
cv2.imshow("2b", imgContours)
# end if # show steps #########################################################################
listOfListsOfMatchingCharsInScene = DetectChars.findListOfListsOfMatchingChars(listOfPossibleCharsInScene)
if Main.showSteps == True: # show steps #######################################################
print "step 3 - listOfListsOfMatchingCharsInScene.Count = " + str(len(listOfListsOfMatchingCharsInScene)) + "\n" # 13 with MCLRNF1 image
imgContours = np.zeros((height, width, 3), np.uint8)
for listOfMatchingChars in listOfListsOfMatchingCharsInScene:
intRandomBlue = random.randint(0, 255)
intRandomGreen = random.randint(0, 255)
intRandomRed = random.randint(0, 255)
contours = []
for matchingChar in listOfMatchingChars:
contours.append(matchingChar.contour)
# end for
cv2.drawContours(imgContours, contours, -1, (intRandomBlue, intRandomGreen, intRandomRed))
# end for
cv2.imshow("3", imgContours)
# end if # show steps #########################################################################
for listOfMatchingChars in listOfListsOfMatchingCharsInScene:
possiblePlate = extractPlate(imgOriginalScene, listOfMatchingChars)
if possiblePlate.imgPlate.empty() == False:
listOfPossiblePlates.append(possiblePlate)
# end if
# end for
print "\n" + str(len(listOfPossiblePlates)) + " possible plates found\n"
if Main.showSteps == True: # show steps #######################################################
print "\n"
cv2.imshow("4a", imgContours)
for i in range(0, len(listOfPossiblePlates)):
p2fRectPoints = []
listOfPossiblePlates[i].rrLocationOfPlateInScene.points(p2fRectPoints)
cv2.line(imgContours, p2fRectPoints[0], p2fRectPoints[1], Main.SCALAR_RED, 2)
cv2.line(imgContours, p2fRectPoints[1], p2fRectPoints[2], Main.SCALAR_RED, 2)
cv2.line(imgContours, p2fRectPoints[2], p2fRectPoints[3], Main.SCALAR_RED, 2)
cv2.line(imgContours, p2fRectPoints[3], p2fRectPoints[4], Main.SCALAR_RED, 2)
cv2.imshow("4a", imgContours)
print "possible plate " + str(i) + ", click on any image and press a key to continue . . .\n"
cv2.imshow("4b", vectorOfPossiblePlates[i].imgPlate)
cv2.waitKey(0)
# end for
print "\nplate detection complete, click on any image and press a key to begin char recognition . . .\n\n"
cv2.waitKey(0)
# end if # show steps #########################################################################
return listOfPossiblePlates
# end function
###################################################################################################
def findPossibleCharsInScene(imgThresh):
listOfPossibleChars = [] # this will be the return value
intCountOfPossibleChars = 0
imgThreshCopy = imgThresh.copy()
imgContours, contours, npaHierarchy = cv2.findContours(imgThreshCopy, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for i in range(0, len(contours)):
possibleChar = PossibleChar.PossibleChar(contours[i])
if DetectChars.checkIfPossibleChar(possibleChar):
intCountOfPossibleChars = intCountOfPossibleChars + 1
listOfPossibleChars.append(possibleChar)
# end if
# end for
if Main.showSteps == True:
print "\nstep 2 - len(contours) = " + str(len(contours)) + "\n" # 2362 with MCLRNF1 image
print "step 2 - intCountOfPossibleChars = " + str(intCountOfPossibleChars) + "\n" # 131 with MCLRNF1 image
cv2.imshow("2a", imgContours)
# end if
return listOfPossibleChars
# end function
###################################################################################################
def extractPlate(imgOriginal, listOfMatchingChars):
possiblePlate = PossiblePlate.PossiblePlate() # this will be the return value
listOfMatchingChars.sort(key = lambda matchingChar: matchingChar.intCenterX) # sort chars from left to right
# calculate the center point of the plate
fltPlateCenterX = (listOfMatchingChars[0].intCenterX + listOfMatchingChars[len(listOfMatchingChars) - 1].intCenterX) / 2.0
fltPlateCenterY = (listOfMatchingChars[0].intCenterY + listOfMatchingChars[len(listOfMatchingChars) - 1].intCenterY) / 2.0
ptPlateCenter = Point.Point(fltPlateCenterX, fltPlateCenterY)
# calculate plate width and height
intPlateWidth = (listOfMatchingChars[len(listOfMatchingChars) - 1].boundingRect.x + listOfMatchingChars[len(listOfMatchingChars) - 1].boundingRect.width - listOfMatchingChars[0].boundingRect.x) * PLATE_WIDTH_PADDING_FACTOR
intTotalOfCharHeights = 0
for matchingChar in listOfMatchingChars:
intTotalOfCharHeights = intTotalOfCharHeights + matchingChar.boundingRect.height
# end for
fltAverageCharHeight = intTotalOfCharHeights / len(listOfMatchingChars)
intPlateHeight = int(dblAverageCharHeight * PLATE_HEIGHT_PADDING_FACTOR)
# calculate correction angle of plate region
fltOpposite = listOfMatchingChars[len(listOfMatchingChars) - 1].intCenterY - listOfMatchingChars[0].intCenterY
fltHypotenuse = DetectChars.distanceBetweenChars(listOfMatchingChars[0], listOfMatchingChars[len(listOfMatchingChars) - 1])
fltCorrectionAngleInRad = math.asin(fltOpposite / fltHypotenuse)
fltCorrectionAngleInDeg = fltCorrectionAngleInRad * (180.0 / math.pi)
ptTopLeftBeforeRotation = Point.Point(ptPlateCenter.x - (intPlateWidth / 2), ptPlateCenter.y - (intPlateHeight / 2))
ptTopRightBeforeRotation = Point.Point(ptPlateCenter.x + (intPlateWidth / 2), ptPlateCenter.y - (intPlateHeight / 2))
ptBottomLeftBeforeRotation = Point.Point(ptPlateCenter.x - (intPlateWidth / 2), ptPlateCenter.y + (intPlateHeight / 2))
ptBottomRightBeforeRotation = Point.Point(ptPlateCenter.x + (intPlateWidth / 2), ptPlateCenter.y + (intPlateHeight / 2))
ptTopLeft = Point.Point()
ptTopLeft.x = (ptTopLeftBeforeRotation.x * math.cos(fltCorrectionAngleInRad)) - (ptTopLeftBeforeRotation.y * math.sin(fltCorrectionAngleInRad))
ptTopLeft.y = (ptTopLeftBeforeRotation.x * math.sin(fltCorrectionAngleInRad)) + (ptTopLeftBeforeRotation.y * math.cos(fltCorrectionAngleInRad))
ptTopRight = Point.Point()
ptTopRight.x = (ptTopRightBeforeRotation.x * math.cos(fltCorrectionAngleInRad)) - (ptTopRightBeforeRotation.y * math.sin(fltCorrectionAngleInRad))
ptTopRight.y = (ptTopRightBeforeRotation.x * math.sin(fltCorrectionAngleInRad)) + (ptTopRightBeforeRotation.y * math.cos(fltCorrectionAngleInRad))
ptBottomLeft = Point.Point()
ptBottomLeft.x = (ptBottomLeftBeforeRotation.x * math.cos(fltCorrectionAngleInRad)) - (ptBottomLeftBeforeRotation.y * math.sin(fltCorrectionAngleInRad))
ptBottomLeft.y = (ptBottomLeftBeforeRotation.x * math.sin(fltCorrectionAngleInRad)) + (ptBottomLeftBeforeRotation.y * math.cos(fltCorrectionAngleInRad))
ptBottomRight = Point.Point()
ptBottomRight.x = (ptBottomRightBeforeRotation.x * math.cos(fltCorrectionAngleInRad)) - (ptBottomRightBeforeRotation.y * math.sin(fltCorrectionAngleInRad))
ptBottomRight.y = (ptBottomRightBeforeRotation.x * math.sin(fltCorrectionAngleInRad)) + (ptBottomRightBeforeRotation.y * math.cos(fltCorrectionAngleInRad))
platePoints = [tuple(ptTopLeft.x, ptTopLeft.y), tuple(ptTopRight.x, ptTopRight.y), tuple(ptBottomRight.x, ptBottomRight.y), tuple(ptBottomLeft.x, ptBottomLeft.y)]
possiblePlate.rrLocationOfPlateInScene = cv2.minAreaRect(platePoints)
rotationMatrix = cv2.getRotationMatrix2D(tuple(ptPlateCenter.x, ptPlateCenter.y), fltCorrectionAngleInDeg, 1.0)
height, width, numChannels = imgOriginal.shape
imgRotated = cv2.warpAffine(imgOriginal, rotationMatrix, tuple(width, height))
imgCropped = cv2.getRectSubPix(imgRotated, tuple(intPlateWidth, intPlateHeight), tuple(ptPlateCenter.x, ptPlateCenter.y))
possiblePlate.imgPlate = imgCropped
return possiblePlate
# end function