# Sebastian Raschka, 2015 (http://sebastianraschka.com) # Python Machine Learning - Code Examples # # Chapter 11 - Working with Unlabeled Data – Clustering Analysis # # S. Raschka. Python Machine Learning. Packt Publishing Ltd., 2015. # GitHub Repo: https://github.com/rasbt/python-machine-learning-book # # License: MIT # https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt import matplotlib.pyplot as plt from matplotlib import cm import numpy as np import pandas as pd from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples from scipy.spatial.distance import squareform from scipy.spatial.distance import pdist from scipy.cluster.hierarchy import linkage from scipy.cluster.hierarchy import dendrogram from sklearn.cluster import AgglomerativeClustering from sklearn.datasets import make_moons from sklearn.cluster import DBSCAN ############################################################################# print(50 * '=') print('Section: Grouping objects by similarity using k-means') print(50 * '-') X, y = make_blobs(n_samples=150, n_features=2, centers=3, cluster_std=0.5, shuffle=True, random_state=0) plt.scatter(X[:, 0], X[:, 1], c='white', marker='o', s=50) plt.grid() # plt.tight_layout() # plt.savefig('./figures/spheres.png', dpi=300) plt.show() km = KMeans(n_clusters=3, init='random', n_init=10, max_iter=300, tol=1e-04, random_state=0) y_km = km.fit_predict(X) plt.scatter(X[y_km == 0, 0], X[y_km == 0, 1], s=50, c='lightgreen', marker='s', label='cluster 1') plt.scatter(X[y_km == 1, 0], X[y_km == 1, 1], s=50, c='orange', marker='o', label='cluster 2') plt.scatter(X[y_km == 2, 0], X[y_km == 2, 1], s=50, c='lightblue', marker='v', label='cluster 3') plt.scatter(km.cluster_centers_[:, 0], km.cluster_centers_[:, 1], s=250, marker='*', c='red', label='centroids') plt.legend() plt.grid() # plt.tight_layout() # plt.savefig('./figures/centroids.png', dpi=300) plt.show() ############################################################################# print(50 * '=') print('Section: Using the elbow method to find the optimal number of clusters') print(50 * '-') print('Distortion: %.2f' % km.inertia_) distortions = [] for i in range(1, 11): km = KMeans(n_clusters=i, init='k-means++', n_init=10, max_iter=300, random_state=0) km.fit(X) distortions.append(km.inertia_) plt.plot(range(1, 11), distortions, marker='o') plt.xlabel('Number of clusters') plt.ylabel('Distortion') # plt.tight_layout() # plt.savefig('./figures/elbow.png', dpi=300) plt.show() ############################################################################# print(50 * '=') print('Section: Quantifying the quality of clustering via silhouette plots') print(50 * '-') km = KMeans(n_clusters=3, init='k-means++', n_init=10, max_iter=300, tol=1e-04, random_state=0) y_km = km.fit_predict(X) cluster_labels = np.unique(y_km) n_clusters = cluster_labels.shape[0] silhouette_vals = silhouette_samples(X, y_km, metric='euclidean') y_ax_lower, y_ax_upper = 0, 0 yticks = [] for i, c in enumerate(cluster_labels): c_silhouette_vals = silhouette_vals[y_km == c] c_silhouette_vals.sort() y_ax_upper += len(c_silhouette_vals) color = cm.jet(i / n_clusters) plt.barh(range(y_ax_lower, y_ax_upper), c_silhouette_vals, height=1.0, edgecolor='none', color=color) yticks.append((y_ax_lower + y_ax_upper) / 2.) y_ax_lower += len(c_silhouette_vals) silhouette_avg = np.mean(silhouette_vals) plt.axvline(silhouette_avg, color="red", linestyle="--") plt.yticks(yticks, cluster_labels + 1) plt.ylabel('Cluster') plt.xlabel('Silhouette coefficient') # plt.tight_layout() # plt.savefig('./figures/silhouette.png', dpi=300) plt.show() print('A bad clunstering:') km = KMeans(n_clusters=2, init='k-means++', n_init=10, max_iter=300, tol=1e-04, random_state=0) y_km = km.fit_predict(X) plt.scatter(X[y_km == 0, 0], X[y_km == 0, 1], s=50, c='lightgreen', marker='s', label='cluster 1') plt.scatter(X[y_km == 1, 0], X[y_km == 1, 1], s=50, c='orange', marker='o', label='cluster 2') plt.scatter(km.cluster_centers_[:, 0], km.cluster_centers_[:, 1], s=250, marker='*', c='red', label='centroids') plt.legend() plt.grid() # plt.tight_layout() # plt.savefig('./figures/centroids_bad.png', dpi=300) plt.show() cluster_labels = np.unique(y_km) n_clusters = cluster_labels.shape[0] silhouette_vals = silhouette_samples(X, y_km, metric='euclidean') y_ax_lower, y_ax_upper = 0, 0 yticks = [] for i, c in enumerate(cluster_labels): c_silhouette_vals = silhouette_vals[y_km == c] c_silhouette_vals.sort() y_ax_upper += len(c_silhouette_vals) color = cm.jet(i / n_clusters) plt.barh(range(y_ax_lower, y_ax_upper), c_silhouette_vals, height=1.0, edgecolor='none', color=color) yticks.append((y_ax_lower + y_ax_upper) / 2.) y_ax_lower += len(c_silhouette_vals) silhouette_avg = np.mean(silhouette_vals) plt.axvline(silhouette_avg, color="red", linestyle="--") plt.yticks(yticks, cluster_labels + 1) plt.ylabel('Cluster') plt.xlabel('Silhouette coefficient') # plt.tight_layout() # plt.savefig('./figures/silhouette_bad.png', dpi=300) plt.show() ############################################################################# print(50 * '=') print('Section: Organizing clusters as a hierarchical tree') print(50 * '-') np.random.seed(123) variables = ['X', 'Y', 'Z'] labels = ['ID_0', 'ID_1', 'ID_2', 'ID_3', 'ID_4'] X = np.random.random_sample([5, 3])*10 df = pd.DataFrame(X, columns=variables, index=labels) print('DataFrame:\n\n', df) ############################################################################# print(50 * '=') print('Section: Performing hierarchical clustering on a distance matrix') print(50 * '-') row_dist = pd.DataFrame(squareform(pdist(df, metric='euclidean')), columns=labels, index=labels) print('Row distances:\n\n', row_dist) print('1. incorrect approach: Squareform distance matrix') row_clusters = linkage(row_dist, method='complete', metric='euclidean') df1 = pd.DataFrame(row_clusters, columns=['row label 1', 'row label 2', 'distance', 'no. of items in clust.'], index=['cluster %d' % (i + 1) for i in range(row_clusters.shape[0])]) print('2. correct approach: Condensed distance matrix') row_clusters = linkage(pdist(df, metric='euclidean'), method='complete') df2 = pd.DataFrame(row_clusters, columns=['row label 1', 'row label 2', 'distance', 'no. of items in clust.'], index=['cluster %d' % (i + 1) for i in range(row_clusters.shape[0])]) print('3. correct approach: Input sample matrix') row_clusters = linkage(df.values, method='complete', metric='euclidean') df3 = pd.DataFrame(row_clusters, columns=['row label 1', 'row label 2', 'distance', 'no. of items in clust.'], index=['cluster %d' % (i + 1) for i in range(row_clusters.shape[0])]) # make dendrogram black (part 1/2) # from scipy.cluster.hierarchy import set_link_color_palette # set_link_color_palette(['black']) row_dendr = dendrogram(row_clusters, labels=labels, # make dendrogram black (part 2/2) # color_threshold=np.inf ) # plt.tight_layout() plt.ylabel('Euclidean distance') # plt.savefig('./figures/dendrogram.png', dpi=300, # bbox_inches='tight') plt.show() ############################################################################# print(50 * '=') print('Section: Attaching dendrograms to a heat map') print(50 * '-') # plot row dendrogram fig = plt.figure(figsize=(8, 8), facecolor='white') axd = fig.add_axes([0.09, 0.1, 0.2, 0.6]) # note: for matplotlib < v1.5.1, please use orientation='right' row_dendr = dendrogram(row_clusters, orientation='left') # reorder data with respect to clustering df_rowclust = df.ix[row_dendr['leaves'][::-1]] axd.set_xticks([]) axd.set_yticks([]) # remove axes spines from dendrogram for i in axd.spines.values(): i.set_visible(False) # plot heatmap axm = fig.add_axes([0.23, 0.1, 0.6, 0.6]) # x-pos, y-pos, width, height cax = axm.matshow(df_rowclust, interpolation='nearest', cmap='hot_r') fig.colorbar(cax) axm.set_xticklabels([''] + list(df_rowclust.columns)) axm.set_yticklabels([''] + list(df_rowclust.index)) # plt.savefig('./figures/heatmap.png', dpi=300) plt.show() ############################################################################# print(50 * '=') print('Section: Applying agglomerative clustering via scikit-learn') print(50 * '-') ac = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linkage='complete') labels = ac.fit_predict(X) print('Cluster labels: %s' % labels) ############################################################################# print(50 * '=') print('Section: Attaching dendrograms to a heat map') print(50 * '-') X, y = make_moons(n_samples=200, noise=0.05, random_state=0) plt.scatter(X[:, 0], X[:, 1]) # plt.tight_layout() # plt.savefig('./figures/moons.png', dpi=300) plt.show() f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 3)) km = KMeans(n_clusters=2, random_state=0) y_km = km.fit_predict(X) ax1.scatter(X[y_km == 0, 0], X[y_km == 0, 1], c='lightblue', marker='o', s=40, label='cluster 1') ax1.scatter(X[y_km == 1, 0], X[y_km == 1, 1], c='red', marker='s', s=40, label='cluster 2') ax1.set_title('K-means clustering') ac = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linkage='complete') y_ac = ac.fit_predict(X) ax2.scatter(X[y_ac == 0, 0], X[y_ac == 0, 1], c='lightblue', marker='o', s=40, label='cluster 1') ax2.scatter(X[y_ac == 1, 0], X[y_ac == 1, 1], c='red', marker='s', s=40, label='cluster 2') ax2.set_title('Agglomerative clustering') plt.legend() # plt.tight_layout() # plt.savefig('./figures/kmeans_and_ac.png', dpi=300) plt.show() print('DBSCAN') db = DBSCAN(eps=0.2, min_samples=5, metric='euclidean') y_db = db.fit_predict(X) plt.scatter(X[y_db == 0, 0], X[y_db == 0, 1], c='lightblue', marker='o', s=40, label='cluster 1') plt.scatter(X[y_db == 1, 0], X[y_db == 1, 1], c='red', marker='s', s=40, label='cluster 2') plt.legend() # plt.tight_layout() # plt.savefig('./figures/moons_dbscan.png', dpi=300) plt.show()