# Sebastian Raschka, 2015 (http://sebastianraschka.com)
# Python Machine Learning - Code Examples
#
# Chapter 11 - Working with Unlabeled Data – Clustering Analysis
#
# S. Raschka. Python Machine Learning. Packt Publishing Ltd., 2015.
# GitHub Repo: https://github.com/rasbt/python-machine-learning-book
#
# License: MIT
# https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt

import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
import pandas as pd
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples
from scipy.spatial.distance import squareform
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import linkage
from scipy.cluster.hierarchy import dendrogram
from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets import make_moons
from sklearn.cluster import DBSCAN

#############################################################################
print(50 * '=')
print('Section: Grouping objects by similarity using k-means')
print(50 * '-')

X, y = make_blobs(n_samples=150,
                  n_features=2,
                  centers=3,
                  cluster_std=0.5,
                  shuffle=True,
                  random_state=0)


plt.scatter(X[:, 0], X[:, 1], c='white', marker='o', s=50)
plt.grid()
# plt.tight_layout()
# plt.savefig('./figures/spheres.png', dpi=300)
plt.show()

km = KMeans(n_clusters=3,
            init='random',
            n_init=10,
            max_iter=300,
            tol=1e-04,
            random_state=0)
y_km = km.fit_predict(X)

plt.scatter(X[y_km == 0, 0],
            X[y_km == 0, 1],
            s=50,
            c='lightgreen',
            marker='s',
            label='cluster 1')
plt.scatter(X[y_km == 1, 0],
            X[y_km == 1, 1],
            s=50,
            c='orange',
            marker='o',
            label='cluster 2')
plt.scatter(X[y_km == 2, 0],
            X[y_km == 2, 1],
            s=50,
            c='lightblue',
            marker='v',
            label='cluster 3')
plt.scatter(km.cluster_centers_[:, 0],
            km.cluster_centers_[:, 1],
            s=250,
            marker='*',
            c='red',
            label='centroids')
plt.legend()
plt.grid()
# plt.tight_layout()
# plt.savefig('./figures/centroids.png', dpi=300)
plt.show()

#############################################################################
print(50 * '=')
print('Section: Using the elbow method to find the optimal number of clusters')
print(50 * '-')

print('Distortion: %.2f' % km.inertia_)

distortions = []
for i in range(1, 11):
    km = KMeans(n_clusters=i,
                init='k-means++',
                n_init=10,
                max_iter=300,
                random_state=0)
    km.fit(X)
    distortions.append(km.inertia_)
plt.plot(range(1, 11), distortions, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Distortion')
# plt.tight_layout()
# plt.savefig('./figures/elbow.png', dpi=300)
plt.show()

#############################################################################
print(50 * '=')
print('Section: Quantifying the quality of clustering via silhouette plots')
print(50 * '-')

km = KMeans(n_clusters=3,
            init='k-means++',
            n_init=10,
            max_iter=300,
            tol=1e-04,
            random_state=0)
y_km = km.fit_predict(X)

cluster_labels = np.unique(y_km)
n_clusters = cluster_labels.shape[0]
silhouette_vals = silhouette_samples(X, y_km, metric='euclidean')
y_ax_lower, y_ax_upper = 0, 0
yticks = []
for i, c in enumerate(cluster_labels):
    c_silhouette_vals = silhouette_vals[y_km == c]
    c_silhouette_vals.sort()
    y_ax_upper += len(c_silhouette_vals)
    color = cm.jet(i / n_clusters)
    plt.barh(range(y_ax_lower, y_ax_upper), c_silhouette_vals, height=1.0,
             edgecolor='none', color=color)

    yticks.append((y_ax_lower + y_ax_upper) / 2.)
    y_ax_lower += len(c_silhouette_vals)

silhouette_avg = np.mean(silhouette_vals)
plt.axvline(silhouette_avg, color="red", linestyle="--")

plt.yticks(yticks, cluster_labels + 1)
plt.ylabel('Cluster')
plt.xlabel('Silhouette coefficient')

# plt.tight_layout()
# plt.savefig('./figures/silhouette.png', dpi=300)
plt.show()


print('A bad clunstering:')

km = KMeans(n_clusters=2,
            init='k-means++',
            n_init=10,
            max_iter=300,
            tol=1e-04,
            random_state=0)
y_km = km.fit_predict(X)

plt.scatter(X[y_km == 0, 0],
            X[y_km == 0, 1],
            s=50,
            c='lightgreen',
            marker='s',
            label='cluster 1')
plt.scatter(X[y_km == 1, 0],
            X[y_km == 1, 1],
            s=50,
            c='orange',
            marker='o',
            label='cluster 2')

plt.scatter(km.cluster_centers_[:, 0], km.cluster_centers_[:, 1],
            s=250, marker='*', c='red', label='centroids')
plt.legend()
plt.grid()
# plt.tight_layout()
# plt.savefig('./figures/centroids_bad.png', dpi=300)
plt.show()


cluster_labels = np.unique(y_km)
n_clusters = cluster_labels.shape[0]
silhouette_vals = silhouette_samples(X, y_km, metric='euclidean')
y_ax_lower, y_ax_upper = 0, 0
yticks = []
for i, c in enumerate(cluster_labels):
    c_silhouette_vals = silhouette_vals[y_km == c]
    c_silhouette_vals.sort()
    y_ax_upper += len(c_silhouette_vals)
    color = cm.jet(i / n_clusters)
    plt.barh(range(y_ax_lower, y_ax_upper), c_silhouette_vals, height=1.0,
             edgecolor='none', color=color)

    yticks.append((y_ax_lower + y_ax_upper) / 2.)
    y_ax_lower += len(c_silhouette_vals)

silhouette_avg = np.mean(silhouette_vals)
plt.axvline(silhouette_avg, color="red", linestyle="--")

plt.yticks(yticks, cluster_labels + 1)
plt.ylabel('Cluster')
plt.xlabel('Silhouette coefficient')

# plt.tight_layout()
# plt.savefig('./figures/silhouette_bad.png', dpi=300)
plt.show()

#############################################################################
print(50 * '=')
print('Section: Organizing clusters as a hierarchical tree')
print(50 * '-')


np.random.seed(123)

variables = ['X', 'Y', 'Z']
labels = ['ID_0', 'ID_1', 'ID_2', 'ID_3', 'ID_4']

X = np.random.random_sample([5, 3])*10
df = pd.DataFrame(X, columns=variables, index=labels)
print('DataFrame:\n\n', df)


#############################################################################
print(50 * '=')
print('Section: Performing hierarchical clustering on a distance matrix')
print(50 * '-')

row_dist = pd.DataFrame(squareform(pdist(df, metric='euclidean')),
                        columns=labels,
                        index=labels)
print('Row distances:\n\n', row_dist)

print('1. incorrect approach: Squareform distance matrix')

row_clusters = linkage(row_dist, method='complete', metric='euclidean')
df1 = pd.DataFrame(row_clusters,
                   columns=['row label 1', 'row label 2',
                            'distance', 'no. of items in clust.'],
                   index=['cluster %d' % (i + 1)
                          for i in range(row_clusters.shape[0])])


print('2. correct approach: Condensed distance matrix')

row_clusters = linkage(pdist(df, metric='euclidean'), method='complete')
df2 = pd.DataFrame(row_clusters,
                   columns=['row label 1', 'row label 2',
                            'distance', 'no. of items in clust.'],
                   index=['cluster %d' % (i + 1)
                          for i in range(row_clusters.shape[0])])


print('3. correct approach: Input sample matrix')

row_clusters = linkage(df.values, method='complete', metric='euclidean')
df3 = pd.DataFrame(row_clusters,
                   columns=['row label 1', 'row label 2',
                            'distance', 'no. of items in clust.'],
                   index=['cluster %d' % (i + 1)
                          for i in range(row_clusters.shape[0])])


# make dendrogram black (part 1/2)
# from scipy.cluster.hierarchy import set_link_color_palette
# set_link_color_palette(['black'])

row_dendr = dendrogram(row_clusters,
                       labels=labels,
                       # make dendrogram black (part 2/2)
                       # color_threshold=np.inf
                       )
# plt.tight_layout()
plt.ylabel('Euclidean distance')
# plt.savefig('./figures/dendrogram.png', dpi=300,
#             bbox_inches='tight')
plt.show()


#############################################################################
print(50 * '=')
print('Section: Attaching dendrograms to a heat map')
print(50 * '-')

# plot row dendrogram
fig = plt.figure(figsize=(8, 8), facecolor='white')
axd = fig.add_axes([0.09, 0.1, 0.2, 0.6])

# note: for matplotlib < v1.5.1, please use orientation='right'
row_dendr = dendrogram(row_clusters, orientation='left')

# reorder data with respect to clustering
df_rowclust = df.ix[row_dendr['leaves'][::-1]]

axd.set_xticks([])
axd.set_yticks([])

# remove axes spines from dendrogram
for i in axd.spines.values():
        i.set_visible(False)

# plot heatmap
axm = fig.add_axes([0.23, 0.1, 0.6, 0.6])  # x-pos, y-pos, width, height
cax = axm.matshow(df_rowclust, interpolation='nearest', cmap='hot_r')
fig.colorbar(cax)
axm.set_xticklabels([''] + list(df_rowclust.columns))
axm.set_yticklabels([''] + list(df_rowclust.index))

# plt.savefig('./figures/heatmap.png', dpi=300)
plt.show()


#############################################################################
print(50 * '=')
print('Section: Applying agglomerative clustering via scikit-learn')
print(50 * '-')


ac = AgglomerativeClustering(n_clusters=2,
                             affinity='euclidean',
                             linkage='complete')
labels = ac.fit_predict(X)
print('Cluster labels: %s' % labels)


#############################################################################
print(50 * '=')
print('Section: Attaching dendrograms to a heat map')
print(50 * '-')

X, y = make_moons(n_samples=200, noise=0.05, random_state=0)
plt.scatter(X[:, 0], X[:, 1])
# plt.tight_layout()
# plt.savefig('./figures/moons.png', dpi=300)
plt.show()


f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 3))

km = KMeans(n_clusters=2, random_state=0)
y_km = km.fit_predict(X)
ax1.scatter(X[y_km == 0, 0], X[y_km == 0, 1],
            c='lightblue', marker='o', s=40, label='cluster 1')
ax1.scatter(X[y_km == 1, 0], X[y_km == 1, 1],
            c='red', marker='s', s=40, label='cluster 2')
ax1.set_title('K-means clustering')

ac = AgglomerativeClustering(n_clusters=2,
                             affinity='euclidean',
                             linkage='complete')
y_ac = ac.fit_predict(X)
ax2.scatter(X[y_ac == 0, 0], X[y_ac == 0, 1], c='lightblue',
            marker='o', s=40, label='cluster 1')
ax2.scatter(X[y_ac == 1, 0], X[y_ac == 1, 1], c='red',
            marker='s', s=40, label='cluster 2')
ax2.set_title('Agglomerative clustering')

plt.legend()
# plt.tight_layout()
# plt.savefig('./figures/kmeans_and_ac.png', dpi=300)
plt.show()

print('DBSCAN')

db = DBSCAN(eps=0.2, min_samples=5, metric='euclidean')
y_db = db.fit_predict(X)
plt.scatter(X[y_db == 0, 0], X[y_db == 0, 1],
            c='lightblue', marker='o', s=40,
            label='cluster 1')
plt.scatter(X[y_db == 1, 0], X[y_db == 1, 1],
            c='red', marker='s', s=40,
            label='cluster 2')
plt.legend()
# plt.tight_layout()
# plt.savefig('./figures/moons_dbscan.png', dpi=300)
plt.show()