Skip to content

Commit cebd7aa

Browse files
committedFeb 3, 2016
wine data desc
1 parent 194e34f commit cebd7aa

File tree

2 files changed

+52
-78
lines changed

2 files changed

+52
-78
lines changed
 

‎code/datasets/wdbc/README.md

+3-48
Original file line numberDiff line numberDiff line change
@@ -2,52 +2,7 @@ Sebastian Raschka, 2015
22

33
# Python Machine Learning - Supplementary Datasets
44

5-
## Wine Dataset
5+
## Breast Cancer Wisconsin (Diagnostic) Data Set
66

7-
- Used in chapters 4 and 5
8-
9-
The Wine dataset for classification.
10-
11-
| | |
12-
|----------------------------|----------------|
13-
| Samples | 178 |
14-
| Features | 13 |
15-
| Classes | 3 |
16-
| Data Set Characteristics: | Multivariate |
17-
| Attribute Characteristics: | Integer, Real |
18-
| Associated Tasks: | Classification |
19-
| Missing Values | None |
20-
21-
| column| attribute |
22-
|-----|------------------------------|
23-
| 1) | Class Label |
24-
| 2) | Alcohol |
25-
| 3) | Malic acid |
26-
| 4) | Ash |
27-
| 5) | Alcalinity of ash |
28-
| 6) | Magnesium |
29-
| 7) | Total phenols |
30-
| 8) | Flavanoids |
31-
| 9) | Nonflavanoid phenols |
32-
| 10) | Proanthocyanins |
33-
| 11) | intensity |
34-
| 12) | Hue |
35-
| 13) | OD280/OD315 of diluted wines |
36-
| 14) | Proline |
37-
38-
39-
| class | samples |
40-
|-------|----|
41-
| 0 | 59 |
42-
| 1 | 71 |
43-
| 2 | 48 |
44-
45-
46-
### References
47-
48-
- Forina, M. et al, PARVUS -
49-
An Extendible Package for Data Exploration, Classification and Correlation.
50-
Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno,
51-
16147 Genoa, Italy.
52-
- Source: [https://archive.ics.uci.edu/ml/datasets/Wine](https://archive.ics.uci.edu/ml/datasets/Wine)
53-
- Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science.
7+
- Used in chapter 6
8+
- Source: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

‎code/datasets/wine/README.md

+49-30
Original file line numberDiff line numberDiff line change
@@ -2,33 +2,52 @@ Sebastian Raschka, 2015
22

33
# Python Machine Learning - Supplementary Datasets
44

5-
### iris
6-
7-
- used in chapters 1, 2, and 3
8-
- source: [https://archive.ics.uci.edu/ml/datasets/Iris](https://archive.ics.uci.edu/ml/datasets/Iris)
9-
10-
### wine
11-
12-
- used in chapters 4 and 5
13-
- source: [https://archive.ics.uci.edu/ml/datasets/Wine](https://archive.ics.uci.edu/ml/datasets/Wine)
14-
15-
### wdbc
16-
17-
- used in chapter 6
18-
- source: [https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)](https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic))
19-
20-
### movie
21-
22-
- used in chapters 8 and 9
23-
- movie dataset converted into a 2-column CSV format: The first column (`review`) contains the text, and the second column (`sentiment`) denotes the polarity, where 0=negative and 1=positive. The first 25,000 are the training samples and the remaining 25,000 rows are the test samples from the "Large Movie Review Dataset v1.0," respectively.
24-
- source: [http://ai.stanford.edu/~amaas/data/sentiment/](http://ai.stanford.edu/~amaas/data/sentiment/)
25-
26-
### housing
27-
28-
- used in chapter 10
29-
- source: [https://archive.ics.uci.edu/ml/datasets/Housing](https://archive.ics.uci.edu/ml/datasets/Housing)
30-
31-
### mnist
32-
33-
- used in chapter 12, 13
34-
- source: [http://yann.lecun.com/exdb/mnist/]
5+
## Wine Dataset
6+
7+
- Used in chapters 4 and 5
8+
9+
The Wine dataset for classification.
10+
11+
| | |
12+
|----------------------------|----------------|
13+
| Samples | 178 |
14+
| Features | 13 |
15+
| Classes | 3 |
16+
| Data Set Characteristics: | Multivariate |
17+
| Attribute Characteristics: | Integer, Real |
18+
| Associated Tasks: | Classification |
19+
| Missing Values | None |
20+
21+
| column| attribute |
22+
|-----|------------------------------|
23+
| 1) | Class Label |
24+
| 2) | Alcohol |
25+
| 3) | Malic acid |
26+
| 4) | Ash |
27+
| 5) | Alcalinity of ash |
28+
| 6) | Magnesium |
29+
| 7) | Total phenols |
30+
| 8) | Flavanoids |
31+
| 9) | Nonflavanoid phenols |
32+
| 10) | Proanthocyanins |
33+
| 11) | intensity |
34+
| 12) | Hue |
35+
| 13) | OD280/OD315 of diluted wines |
36+
| 14) | Proline |
37+
38+
39+
| class | samples |
40+
|-------|----|
41+
| 0 | 59 |
42+
| 1 | 71 |
43+
| 2 | 48 |
44+
45+
46+
### References
47+
48+
- Forina, M. et al, PARVUS -
49+
An Extendible Package for Data Exploration, Classification and Correlation.
50+
Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno,
51+
16147 Genoa, Italy.
52+
- Source: [https://archive.ics.uci.edu/ml/datasets/Wine](https://archive.ics.uci.edu/ml/datasets/Wine)
53+
- Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science.

0 commit comments

Comments
 (0)
Please sign in to comment.