@@ -2,33 +2,52 @@ Sebastian Raschka, 2015
2
2
3
3
# Python Machine Learning - Supplementary Datasets
4
4
5
- ### iris
6
-
7
- - used in chapters 1, 2, and 3
8
- - source: [ https://archive.ics.uci.edu/ml/datasets/Iris ] ( https://archive.ics.uci.edu/ml/datasets/Iris )
9
-
10
- ### wine
11
-
12
- - used in chapters 4 and 5
13
- - source: [ https://archive.ics.uci.edu/ml/datasets/Wine ] ( https://archive.ics.uci.edu/ml/datasets/Wine )
14
-
15
- ### wdbc
16
-
17
- - used in chapter 6
18
- - source: [ https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) ] ( https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) )
19
-
20
- ### movie
21
-
22
- - used in chapters 8 and 9
23
- - movie dataset converted into a 2-column CSV format: The first column (` review ` ) contains the text, and the second column (` sentiment ` ) denotes the polarity, where 0=negative and 1=positive. The first 25,000 are the training samples and the remaining 25,000 rows are the test samples from the "Large Movie Review Dataset v1.0," respectively.
24
- - source: [ http://ai.stanford.edu/~amaas/data/sentiment/ ] ( http://ai.stanford.edu/~amaas/data/sentiment/ )
25
-
26
- ### housing
27
-
28
- - used in chapter 10
29
- - source: [ https://archive.ics.uci.edu/ml/datasets/Housing ] ( https://archive.ics.uci.edu/ml/datasets/Housing )
30
-
31
- ### mnist
32
-
33
- - used in chapter 12, 13
34
- - source: [ http://yann.lecun.com/exdb/mnist/ ]
5
+ ## Wine Dataset
6
+
7
+ - Used in chapters 4 and 5
8
+
9
+ The Wine dataset for classification.
10
+
11
+ | | |
12
+ | ----------------------------| ----------------|
13
+ | Samples | 178 |
14
+ | Features | 13 |
15
+ | Classes | 3 |
16
+ | Data Set Characteristics: | Multivariate |
17
+ | Attribute Characteristics: | Integer, Real |
18
+ | Associated Tasks: | Classification |
19
+ | Missing Values | None |
20
+
21
+ | column| attribute |
22
+ | -----| ------------------------------|
23
+ | 1) | Class Label |
24
+ | 2) | Alcohol |
25
+ | 3) | Malic acid |
26
+ | 4) | Ash |
27
+ | 5) | Alcalinity of ash |
28
+ | 6) | Magnesium |
29
+ | 7) | Total phenols |
30
+ | 8) | Flavanoids |
31
+ | 9) | Nonflavanoid phenols |
32
+ | 10) | Proanthocyanins |
33
+ | 11) | intensity |
34
+ | 12) | Hue |
35
+ | 13) | OD280/OD315 of diluted wines |
36
+ | 14) | Proline |
37
+
38
+
39
+ | class | samples |
40
+ | -------| ----|
41
+ | 0 | 59 |
42
+ | 1 | 71 |
43
+ | 2 | 48 |
44
+
45
+
46
+ ### References
47
+
48
+ - Forina, M. et al, PARVUS -
49
+ An Extendible Package for Data Exploration, Classification and Correlation.
50
+ Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno,
51
+ 16147 Genoa, Italy.
52
+ - Source: [ https://archive.ics.uci.edu/ml/datasets/Wine ] ( https://archive.ics.uci.edu/ml/datasets/Wine )
53
+ - Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science.
0 commit comments