Skip to content

Commit 2c7049c

Browse files
committed
header rescaling
1 parent 7e54b50 commit 2c7049c

File tree

7 files changed

+269
-51
lines changed

7 files changed

+269
-51
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,17 @@
1+
Building intelligent machines to transform data into knowledge
2+
The three different types of machine learning
3+
Making predictions about the future with supervised learning
4+
Classification for predicting class labels
5+
Regression for predicting continuous outcomes
6+
Solving interactive problems with reinforcement learning
7+
Discovering hidden structures with unsupervised learning
8+
Finding subgroups with clustering
9+
Dimensionality reduction for data compression
10+
An introduction to the basic terminology and notations
11+
A roadmap for building machine learning systems
12+
Preprocessing – getting data into shape
13+
Training and selecting a predictive model
14+
Evaluating models and predicting unseen data instances
15+
Using Python for machine learning
16+
Installing Python packages
17+
Summary
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,9 @@
1+
Artificial neurons - a brief glimpse into the early history
2+
of machine learning
3+
Implementing a perceptron learning algorithm in Python
4+
Training a perceptron model on the Iris dataset
5+
Adaptive linear neurons and the convergence of learning
6+
Minimizing cost functions with gradient descent
7+
Implementing an Adaptive Linear Neuron in Python
8+
Large scale machine learning and stochastic gradient descent
9+
Summary
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
Choosing a classification algorithm
2+
First steps with scikit-learn
3+
Training a perceptron via scikit-learn
4+
Modeling class probabilities via logistic regression
5+
Logistic regression intuition and conditional probabilities
6+
Learning the weights of the logistic cost function
7+
Training a logistic regression model with scikit-learn
8+
Tackling overfitting via regularization
9+
Maximum margin classification with support vector machines
10+
Maximum margin intuition
11+
Dealing with the nonlinearly separable case using slack variables
12+
Alternative implementations in scikit-learn
13+
Solving nonlinear problems using a kernel SVM
14+
Using the kernel trick to find separating hyperplanes in higher dimensional space
15+
Decision tree learning
16+
Maximizing information gain – getting the most bang for the buck
17+
Building a decision tree
18+
Combining weak to strong learners via random forests
19+
K-nearest neighbors – a lazy learning algorithm
20+
Summary
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
# Sebastian Raschka, 2015
2+
# convenience function for myself to add internal links to IPython toc
3+
# use as `python ipynb_toc_links.py /blank_tocs/ch01.toc`
4+
5+
import sys
6+
7+
ipynb = sys.argv[1]
8+
with open(ipynb, 'r') as f:
9+
for line in f:
10+
out_str = ' ' * (len(line) - len(line.lstrip()))
11+
line = line.strip()
12+
out_str += '- [%s' % line
13+
out_str += '](#%s)' % line.replace(' ', '-')
14+
print(out_str)

code/ch01/ch01.ipynb

+151-24
Original file line numberDiff line numberDiff line change
@@ -60,6 +60,14 @@
6060
"- [Summary](#Summary)"
6161
]
6262
},
63+
{
64+
"cell_type": "markdown",
65+
"metadata": {},
66+
"source": [
67+
"<br>\n",
68+
"<br>"
69+
]
70+
},
6371
{
6472
"cell_type": "code",
6573
"execution_count": 1,
@@ -75,14 +83,21 @@
7583
"cell_type": "markdown",
7684
"metadata": {},
7785
"source": [
78-
"## Building intelligent machines to transform data into knowledge"
86+
"# Building intelligent machines to transform data into knowledge"
87+
]
88+
},
89+
{
90+
"cell_type": "markdown",
91+
"metadata": {},
92+
"source": [
93+
"..."
7994
]
8095
},
8196
{
8297
"cell_type": "markdown",
8398
"metadata": {},
8499
"source": [
85-
"## The three different types of machine learning"
100+
"# The three different types of machine learning"
86101
]
87102
},
88103
{
@@ -116,7 +131,15 @@
116131
"cell_type": "markdown",
117132
"metadata": {},
118133
"source": [
119-
"### Making predictions about the future with supervised learning"
134+
"<br>\n",
135+
"<br>"
136+
]
137+
},
138+
{
139+
"cell_type": "markdown",
140+
"metadata": {},
141+
"source": [
142+
"## Making predictions about the future with supervised learning"
120143
]
121144
},
122145
{
@@ -150,7 +173,15 @@
150173
"cell_type": "markdown",
151174
"metadata": {},
152175
"source": [
153-
"#### Classification for predicting class labels"
176+
"<br>\n",
177+
"<br>"
178+
]
179+
},
180+
{
181+
"cell_type": "markdown",
182+
"metadata": {},
183+
"source": [
184+
"### Classification for predicting class labels"
154185
]
155186
},
156187
{
@@ -184,7 +215,15 @@
184215
"cell_type": "markdown",
185216
"metadata": {},
186217
"source": [
187-
"#### Regression for predicting continuous outcomes"
218+
"<br>\n",
219+
"<br>"
220+
]
221+
},
222+
{
223+
"cell_type": "markdown",
224+
"metadata": {},
225+
"source": [
226+
"### Regression for predicting continuous outcomes"
188227
]
189228
},
190229
{
@@ -218,7 +257,15 @@
218257
"cell_type": "markdown",
219258
"metadata": {},
220259
"source": [
221-
"### Solving interactive problems with reinforcement learning"
260+
"<br>\n",
261+
"<br>"
262+
]
263+
},
264+
{
265+
"cell_type": "markdown",
266+
"metadata": {},
267+
"source": [
268+
"## Solving interactive problems with reinforcement learning"
222269
]
223270
},
224271
{
@@ -252,14 +299,29 @@
252299
"cell_type": "markdown",
253300
"metadata": {},
254301
"source": [
255-
"### Discovering hidden structures with unsupervised learning"
302+
"<br>\n",
303+
"<br>"
304+
]
305+
},
306+
{
307+
"cell_type": "markdown",
308+
"metadata": {},
309+
"source": [
310+
"## Discovering hidden structures with unsupervised learning"
256311
]
257312
},
258313
{
259314
"cell_type": "markdown",
260315
"metadata": {},
261316
"source": [
262-
"#### Finding subgroups with clustering"
317+
"..."
318+
]
319+
},
320+
{
321+
"cell_type": "markdown",
322+
"metadata": {},
323+
"source": [
324+
"### Finding subgroups with clustering"
263325
]
264326
},
265327
{
@@ -293,7 +355,15 @@
293355
"cell_type": "markdown",
294356
"metadata": {},
295357
"source": [
296-
"#### Dimensionality reduction for data compression"
358+
"<br>\n",
359+
"<br>"
360+
]
361+
},
362+
{
363+
"cell_type": "markdown",
364+
"metadata": {},
365+
"source": [
366+
"### Dimensionality reduction for data compression"
297367
]
298368
},
299369
{
@@ -327,7 +397,15 @@
327397
"cell_type": "markdown",
328398
"metadata": {},
329399
"source": [
330-
"#### An introduction to the basic terminology and notations"
400+
"<br>\n",
401+
"<br>"
402+
]
403+
},
404+
{
405+
"cell_type": "markdown",
406+
"metadata": {},
407+
"source": [
408+
"### An introduction to the basic terminology and notations"
331409
]
332410
},
333411
{
@@ -361,7 +439,15 @@
361439
"cell_type": "markdown",
362440
"metadata": {},
363441
"source": [
364-
"## A roadmap for building machine learning systems"
442+
"<br>\n",
443+
"<br>"
444+
]
445+
},
446+
{
447+
"cell_type": "markdown",
448+
"metadata": {},
449+
"source": [
450+
"# A roadmap for building machine learning systems"
365451
]
366452
},
367453
{
@@ -395,52 +481,93 @@
395481
"cell_type": "markdown",
396482
"metadata": {},
397483
"source": [
398-
"### Preprocessing - getting data into shape"
484+
"<br>\n",
485+
"<br>"
399486
]
400487
},
401488
{
402489
"cell_type": "markdown",
403490
"metadata": {},
404491
"source": [
405-
"### Training and selecting a predictive model"
492+
"## Preprocessing - getting data into shape"
406493
]
407494
},
408495
{
409496
"cell_type": "markdown",
410497
"metadata": {},
411498
"source": [
412-
"### Evaluating models and predicting unseen data instances"
499+
"..."
413500
]
414501
},
415502
{
416503
"cell_type": "markdown",
417504
"metadata": {},
418505
"source": [
419-
"## Using Python for machine learning"
506+
"## Training and selecting a predictive model"
420507
]
421508
},
422509
{
423510
"cell_type": "markdown",
424511
"metadata": {},
425512
"source": [
426-
"## Installing Python packages"
513+
"..."
427514
]
428515
},
429516
{
430517
"cell_type": "markdown",
431518
"metadata": {},
432519
"source": [
433-
"## Summary"
520+
"## Evaluating models and predicting unseen data instances"
434521
]
435522
},
436523
{
437-
"cell_type": "code",
438-
"execution_count": null,
439-
"metadata": {
440-
"collapsed": true
441-
},
442-
"outputs": [],
443-
"source": []
524+
"cell_type": "markdown",
525+
"metadata": {},
526+
"source": [
527+
"..."
528+
]
529+
},
530+
{
531+
"cell_type": "markdown",
532+
"metadata": {},
533+
"source": [
534+
"# Using Python for machine learning"
535+
]
536+
},
537+
{
538+
"cell_type": "markdown",
539+
"metadata": {},
540+
"source": [
541+
"..."
542+
]
543+
},
544+
{
545+
"cell_type": "markdown",
546+
"metadata": {},
547+
"source": [
548+
"# Installing Python packages"
549+
]
550+
},
551+
{
552+
"cell_type": "markdown",
553+
"metadata": {},
554+
"source": [
555+
"..."
556+
]
557+
},
558+
{
559+
"cell_type": "markdown",
560+
"metadata": {},
561+
"source": [
562+
"# Summary"
563+
]
564+
},
565+
{
566+
"cell_type": "markdown",
567+
"metadata": {},
568+
"source": [
569+
"..."
570+
]
444571
}
445572
],
446573
"metadata": {

code/ch02/README.md

+1-7
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,3 @@
11
Sebastian Raschka, 2015
22

3-
# Python Machine Learning - Chapter 2 Code
4-
5-
The content is organized as follows:
6-
7-
- `code/`: the main IPython notebook with the code example as they appear in the chapter.
8-
- `data/`: optional offline version(s) of the dataset(s)
9-
- `figures/`: notebook figures and color figures
3+
# Python Machine Learning - Chapter 2 Code Examples

0 commit comments

Comments
 (0)