|
60 | 60 | "- [Summary](#Summary)"
|
61 | 61 | ]
|
62 | 62 | },
|
| 63 | + { |
| 64 | + "cell_type": "markdown", |
| 65 | + "metadata": {}, |
| 66 | + "source": [ |
| 67 | + "<br>\n", |
| 68 | + "<br>" |
| 69 | + ] |
| 70 | + }, |
63 | 71 | {
|
64 | 72 | "cell_type": "code",
|
65 | 73 | "execution_count": 1,
|
|
75 | 83 | "cell_type": "markdown",
|
76 | 84 | "metadata": {},
|
77 | 85 | "source": [
|
78 |
| - "## Building intelligent machines to transform data into knowledge" |
| 86 | + "# Building intelligent machines to transform data into knowledge" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "markdown", |
| 91 | + "metadata": {}, |
| 92 | + "source": [ |
| 93 | + "..." |
79 | 94 | ]
|
80 | 95 | },
|
81 | 96 | {
|
82 | 97 | "cell_type": "markdown",
|
83 | 98 | "metadata": {},
|
84 | 99 | "source": [
|
85 |
| - "## The three different types of machine learning" |
| 100 | + "# The three different types of machine learning" |
86 | 101 | ]
|
87 | 102 | },
|
88 | 103 | {
|
|
116 | 131 | "cell_type": "markdown",
|
117 | 132 | "metadata": {},
|
118 | 133 | "source": [
|
119 |
| - "### Making predictions about the future with supervised learning" |
| 134 | + "<br>\n", |
| 135 | + "<br>" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "markdown", |
| 140 | + "metadata": {}, |
| 141 | + "source": [ |
| 142 | + "## Making predictions about the future with supervised learning" |
120 | 143 | ]
|
121 | 144 | },
|
122 | 145 | {
|
|
150 | 173 | "cell_type": "markdown",
|
151 | 174 | "metadata": {},
|
152 | 175 | "source": [
|
153 |
| - "#### Classification for predicting class labels" |
| 176 | + "<br>\n", |
| 177 | + "<br>" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "markdown", |
| 182 | + "metadata": {}, |
| 183 | + "source": [ |
| 184 | + "### Classification for predicting class labels" |
154 | 185 | ]
|
155 | 186 | },
|
156 | 187 | {
|
|
184 | 215 | "cell_type": "markdown",
|
185 | 216 | "metadata": {},
|
186 | 217 | "source": [
|
187 |
| - "#### Regression for predicting continuous outcomes" |
| 218 | + "<br>\n", |
| 219 | + "<br>" |
| 220 | + ] |
| 221 | + }, |
| 222 | + { |
| 223 | + "cell_type": "markdown", |
| 224 | + "metadata": {}, |
| 225 | + "source": [ |
| 226 | + "### Regression for predicting continuous outcomes" |
188 | 227 | ]
|
189 | 228 | },
|
190 | 229 | {
|
|
218 | 257 | "cell_type": "markdown",
|
219 | 258 | "metadata": {},
|
220 | 259 | "source": [
|
221 |
| - "### Solving interactive problems with reinforcement learning" |
| 260 | + "<br>\n", |
| 261 | + "<br>" |
| 262 | + ] |
| 263 | + }, |
| 264 | + { |
| 265 | + "cell_type": "markdown", |
| 266 | + "metadata": {}, |
| 267 | + "source": [ |
| 268 | + "## Solving interactive problems with reinforcement learning" |
222 | 269 | ]
|
223 | 270 | },
|
224 | 271 | {
|
|
252 | 299 | "cell_type": "markdown",
|
253 | 300 | "metadata": {},
|
254 | 301 | "source": [
|
255 |
| - "### Discovering hidden structures with unsupervised learning" |
| 302 | + "<br>\n", |
| 303 | + "<br>" |
| 304 | + ] |
| 305 | + }, |
| 306 | + { |
| 307 | + "cell_type": "markdown", |
| 308 | + "metadata": {}, |
| 309 | + "source": [ |
| 310 | + "## Discovering hidden structures with unsupervised learning" |
256 | 311 | ]
|
257 | 312 | },
|
258 | 313 | {
|
259 | 314 | "cell_type": "markdown",
|
260 | 315 | "metadata": {},
|
261 | 316 | "source": [
|
262 |
| - "#### Finding subgroups with clustering" |
| 317 | + "..." |
| 318 | + ] |
| 319 | + }, |
| 320 | + { |
| 321 | + "cell_type": "markdown", |
| 322 | + "metadata": {}, |
| 323 | + "source": [ |
| 324 | + "### Finding subgroups with clustering" |
263 | 325 | ]
|
264 | 326 | },
|
265 | 327 | {
|
|
293 | 355 | "cell_type": "markdown",
|
294 | 356 | "metadata": {},
|
295 | 357 | "source": [
|
296 |
| - "#### Dimensionality reduction for data compression" |
| 358 | + "<br>\n", |
| 359 | + "<br>" |
| 360 | + ] |
| 361 | + }, |
| 362 | + { |
| 363 | + "cell_type": "markdown", |
| 364 | + "metadata": {}, |
| 365 | + "source": [ |
| 366 | + "### Dimensionality reduction for data compression" |
297 | 367 | ]
|
298 | 368 | },
|
299 | 369 | {
|
|
327 | 397 | "cell_type": "markdown",
|
328 | 398 | "metadata": {},
|
329 | 399 | "source": [
|
330 |
| - "#### An introduction to the basic terminology and notations" |
| 400 | + "<br>\n", |
| 401 | + "<br>" |
| 402 | + ] |
| 403 | + }, |
| 404 | + { |
| 405 | + "cell_type": "markdown", |
| 406 | + "metadata": {}, |
| 407 | + "source": [ |
| 408 | + "### An introduction to the basic terminology and notations" |
331 | 409 | ]
|
332 | 410 | },
|
333 | 411 | {
|
|
361 | 439 | "cell_type": "markdown",
|
362 | 440 | "metadata": {},
|
363 | 441 | "source": [
|
364 |
| - "## A roadmap for building machine learning systems" |
| 442 | + "<br>\n", |
| 443 | + "<br>" |
| 444 | + ] |
| 445 | + }, |
| 446 | + { |
| 447 | + "cell_type": "markdown", |
| 448 | + "metadata": {}, |
| 449 | + "source": [ |
| 450 | + "# A roadmap for building machine learning systems" |
365 | 451 | ]
|
366 | 452 | },
|
367 | 453 | {
|
|
395 | 481 | "cell_type": "markdown",
|
396 | 482 | "metadata": {},
|
397 | 483 | "source": [
|
398 |
| - "### Preprocessing - getting data into shape" |
| 484 | + "<br>\n", |
| 485 | + "<br>" |
399 | 486 | ]
|
400 | 487 | },
|
401 | 488 | {
|
402 | 489 | "cell_type": "markdown",
|
403 | 490 | "metadata": {},
|
404 | 491 | "source": [
|
405 |
| - "### Training and selecting a predictive model" |
| 492 | + "## Preprocessing - getting data into shape" |
406 | 493 | ]
|
407 | 494 | },
|
408 | 495 | {
|
409 | 496 | "cell_type": "markdown",
|
410 | 497 | "metadata": {},
|
411 | 498 | "source": [
|
412 |
| - "### Evaluating models and predicting unseen data instances" |
| 499 | + "..." |
413 | 500 | ]
|
414 | 501 | },
|
415 | 502 | {
|
416 | 503 | "cell_type": "markdown",
|
417 | 504 | "metadata": {},
|
418 | 505 | "source": [
|
419 |
| - "## Using Python for machine learning" |
| 506 | + "## Training and selecting a predictive model" |
420 | 507 | ]
|
421 | 508 | },
|
422 | 509 | {
|
423 | 510 | "cell_type": "markdown",
|
424 | 511 | "metadata": {},
|
425 | 512 | "source": [
|
426 |
| - "## Installing Python packages" |
| 513 | + "..." |
427 | 514 | ]
|
428 | 515 | },
|
429 | 516 | {
|
430 | 517 | "cell_type": "markdown",
|
431 | 518 | "metadata": {},
|
432 | 519 | "source": [
|
433 |
| - "## Summary" |
| 520 | + "## Evaluating models and predicting unseen data instances" |
434 | 521 | ]
|
435 | 522 | },
|
436 | 523 | {
|
437 |
| - "cell_type": "code", |
438 |
| - "execution_count": null, |
439 |
| - "metadata": { |
440 |
| - "collapsed": true |
441 |
| - }, |
442 |
| - "outputs": [], |
443 |
| - "source": [] |
| 524 | + "cell_type": "markdown", |
| 525 | + "metadata": {}, |
| 526 | + "source": [ |
| 527 | + "..." |
| 528 | + ] |
| 529 | + }, |
| 530 | + { |
| 531 | + "cell_type": "markdown", |
| 532 | + "metadata": {}, |
| 533 | + "source": [ |
| 534 | + "# Using Python for machine learning" |
| 535 | + ] |
| 536 | + }, |
| 537 | + { |
| 538 | + "cell_type": "markdown", |
| 539 | + "metadata": {}, |
| 540 | + "source": [ |
| 541 | + "..." |
| 542 | + ] |
| 543 | + }, |
| 544 | + { |
| 545 | + "cell_type": "markdown", |
| 546 | + "metadata": {}, |
| 547 | + "source": [ |
| 548 | + "# Installing Python packages" |
| 549 | + ] |
| 550 | + }, |
| 551 | + { |
| 552 | + "cell_type": "markdown", |
| 553 | + "metadata": {}, |
| 554 | + "source": [ |
| 555 | + "..." |
| 556 | + ] |
| 557 | + }, |
| 558 | + { |
| 559 | + "cell_type": "markdown", |
| 560 | + "metadata": {}, |
| 561 | + "source": [ |
| 562 | + "# Summary" |
| 563 | + ] |
| 564 | + }, |
| 565 | + { |
| 566 | + "cell_type": "markdown", |
| 567 | + "metadata": {}, |
| 568 | + "source": [ |
| 569 | + "..." |
| 570 | + ] |
444 | 571 | }
|
445 | 572 | ],
|
446 | 573 | "metadata": {
|
|
0 commit comments