forked from rasbt/python-machine-learning-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch04.py
386 lines (290 loc) · 11.5 KB
/
ch04.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Sebastian Raschka, 2015 (http://sebastianraschka.com)
# Python Machine Learning - Code Examples
#
# Chapter 4 - Building Good Training Sets – Data Pre-Processing
#
# S. Raschka. Python Machine Learning. Packt Publishing Ltd., 2015.
# GitHub Repo: https://github.com/rasbt/python-machine-learning-book
#
# License: MIT
# https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt
import pandas as pd
import numpy as np
from io import StringIO
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.base import clone
from sklearn.metrics import accuracy_score
from itertools import combinations
import matplotlib.pyplot as plt
#############################################################################
print(50 * '=')
print('Section: Dealing with missing data')
print(50 * '-')
csv_data = '''A,B,C,D
1.0,2.0,3.0,4.0
5.0,6.0,,8.0
10.0,11.0,12.0,'''
# If you are using Python 2.7, you need
# to convert the string to unicode:
# csv_data = unicode(csv_data)
df = pd.read_csv(StringIO(csv_data))
print(df)
print('\n\nExecuting df.isnull().sum():')
print(df.isnull().sum())
#############################################################################
print(50 * '=')
print('Section: Eliminating samples or features with missing values')
print(50 * '-')
print('\n\nExecuting df.dropna()')
print(df.dropna())
print('\n\nExecuting df.dropna(axis=1)')
print(df.dropna(axis=1))
print("\n\nExecuting df.dropna(thresh=4)")
print("(drop rows that have not at least 4 non-NaN values)")
print(df.dropna(thresh=4))
print("\n\nExecuting df.dropna(how='all')")
print("(only drop rows where all columns are NaN)")
print(df.dropna(how='all'))
print("\n\nExecuting df.dropna(subset=['C'])")
print("(only drop rows where NaN appear in specific columns (here: 'C'))")
print(df.dropna(subset=['C']))
#############################################################################
print(50 * '=')
print('Section: Imputing missing values')
print(50 * '-')
imr = Imputer(missing_values='NaN', strategy='mean', axis=0)
imr = imr.fit(df)
imputed_data = imr.transform(df.values)
print('Input Array:\n', df.values)
print('Imputed Data:\n', imputed_data)
#############################################################################
print(50 * '=')
print('Section: Handling categorical data')
print(50 * '-')
df = pd.DataFrame([['green', 'M', 10.1, 'class1'],
['red', 'L', 13.5, 'class2'],
['blue', 'XL', 15.3, 'class1']])
df.columns = ['color', 'size', 'price', 'classlabel']
print('Input Array:\n', df)
#############################################################################
print(50 * '=')
print('Section: Mapping ordinal features')
print(50 * '-')
size_mapping = {'XL': 3,
'L': 2,
'M': 1}
df['size'] = df['size'].map(size_mapping)
print('Mapping:\n', df)
inv_size_mapping = {v: k for k, v in size_mapping.items()}
df_inv = df['size'].map(inv_size_mapping)
print('\nInverse mapping:\n', df_inv)
#############################################################################
print(50 * '=')
print('Section: Encoding class labels')
print(50 * '-')
class_mapping = {label: idx for idx, label
in enumerate(np.unique(df['classlabel']))}
print('\nClass mapping:\n', class_mapping)
df['classlabel'] = df['classlabel'].map(class_mapping)
print('Mapping:\n', df)
inv_class_mapping = {v: k for k, v in class_mapping.items()}
df_inv = df['classlabel'] = df['classlabel'].map(inv_class_mapping)
print('\nInverse mapping:\n', df_inv)
class_le = LabelEncoder()
y = class_le.fit_transform(df['classlabel'].values)
print('Label encoder tansform:\n', y)
y_inv = class_le.inverse_transform(y)
print('Label encoder inverse tansform:\n', y_inv)
#############################################################################
print(50 * '=')
print('Section: Performing one hot encoding on nominal features')
print(50 * '-')
X = df[['color', 'size', 'price']].values
color_le = LabelEncoder()
X[:, 0] = color_le.fit_transform(X[:, 0])
print("Input array:\n", X)
ohe = OneHotEncoder(categorical_features=[0])
X_onehot = ohe.fit_transform(X).toarray()
print("Encoded array:\n", X_onehot)
df_dummies = pd.get_dummies(df[['price', 'color', 'size']])
print("Pandas get_dummies alternative:\n", df_dummies)
#############################################################################
print(50 * '=')
print('Section: Partitioning a dataset in training and test sets')
print(50 * '-')
df_wine = pd.read_csv('https://archive.ics.uci.edu/'
'ml/machine-learning-databases/wine/wine.data',
header=None)
df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash',
'Alcalinity of ash', 'Magnesium', 'Total phenols',
'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins',
'Color intensity', 'Hue', 'OD280/OD315 of diluted wines',
'Proline']
print('Class labels', np.unique(df_wine['Class label']))
print('\nWine data excerpt:\n\n', df_wine.head())
X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=0.3, random_state=0)
#############################################################################
print(50 * '=')
print('Section: Bringing features onto the same scale')
print(50 * '-')
mms = MinMaxScaler()
X_train_norm = mms.fit_transform(X_train)
X_test_norm = mms.transform(X_test)
stdsc = StandardScaler()
X_train_std = stdsc.fit_transform(X_train)
X_test_std = stdsc.transform(X_test)
ex = pd.DataFrame([0, 1, 2, 3, 4, 5])
print('Scaling Example:\n')
print('\nInput array:\n', ex)
ex[1] = (ex[0] - ex[0].mean()) / ex[0].std(ddof=0)
# Please note that pandas uses ddof=1 (sample standard deviation)
# by default, whereas NumPy's std method and the StandardScaler
# uses ddof=0 (population standard deviation)
# normalize
ex[2] = (ex[0] - ex[0].min()) / (ex[0].max() - ex[0].min())
ex.columns = ['input', 'standardized', 'normalized']
print('\nOutput array after scaling:\n', ex)
#############################################################################
print(50 * '=')
print('Section: Sparse solutions with L1-regularization')
print(50 * '-')
lr = LogisticRegression(penalty='l1', C=0.1)
lr.fit(X_train_std, y_train)
print('Training accuracy:', lr.score(X_train_std, y_train))
print('Test accuracy:', lr.score(X_test_std, y_test))
print('Intercept:', lr.intercept_)
print('Model weights:', lr.coef_)
fig = plt.figure()
ax = plt.subplot(111)
colors = ['blue', 'green', 'red', 'cyan',
'magenta', 'yellow', 'black',
'pink', 'lightgreen', 'lightblue',
'gray', 'indigo', 'orange']
weights, params = [], []
for c in np.arange(-4, 6):
lr = LogisticRegression(penalty='l1', C=10**c, random_state=0)
lr.fit(X_train_std, y_train)
weights.append(lr.coef_[1])
params.append(10**c)
weights = np.array(weights)
for column, color in zip(range(weights.shape[1]), colors):
plt.plot(params, weights[:, column],
label=df_wine.columns[column + 1],
color=color)
plt.axhline(0, color='black', linestyle='--', linewidth=3)
plt.xlim([10**(-5), 10**5])
plt.ylabel('weight coefficient')
plt.xlabel('C')
plt.xscale('log')
plt.legend(loc='upper left')
ax.legend(loc='upper center',
bbox_to_anchor=(1.38, 1.03),
ncol=1, fancybox=True)
# plt.savefig('./figures/l1_path.png', dpi=300)
plt.show()
#############################################################################
print(50 * '=')
print('Section: Sequential feature selection algorithms')
print(50 * '-')
class SBS():
def __init__(self, estimator, k_features, scoring=accuracy_score,
test_size=0.25, random_state=1):
self.scoring = scoring
self.estimator = clone(estimator)
self.k_features = k_features
self.test_size = test_size
self.random_state = random_state
def fit(self, X, y):
X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=self.test_size,
random_state=self.random_state)
dim = X_train.shape[1]
self.indices_ = tuple(range(dim))
self.subsets_ = [self.indices_]
score = self._calc_score(X_train, y_train,
X_test, y_test, self.indices_)
self.scores_ = [score]
while dim > self.k_features:
scores = []
subsets = []
for p in combinations(self.indices_, r=dim - 1):
score = self._calc_score(X_train, y_train,
X_test, y_test, p)
scores.append(score)
subsets.append(p)
best = np.argmax(scores)
self.indices_ = subsets[best]
self.subsets_.append(self.indices_)
dim -= 1
self.scores_.append(scores[best])
self.k_score_ = self.scores_[-1]
return self
def transform(self, X):
return X[:, self.indices_]
def _calc_score(self, X_train, y_train, X_test, y_test, indices):
self.estimator.fit(X_train[:, indices], y_train)
y_pred = self.estimator.predict(X_test[:, indices])
score = self.scoring(y_test, y_pred)
return score
knn = KNeighborsClassifier(n_neighbors=2)
# selecting features
sbs = SBS(knn, k_features=1)
sbs.fit(X_train_std, y_train)
# plotting performance of feature subsets
k_feat = [len(k) for k in sbs.subsets_]
plt.plot(k_feat, sbs.scores_, marker='o')
plt.ylim([0.7, 1.1])
plt.ylabel('Accuracy')
plt.xlabel('Number of features')
plt.grid()
# plt.tight_layout()
# plt.savefig('./sbs.png', dpi=300)
plt.show()
k5 = list(sbs.subsets_[8])
print('Selected top 5 features:\n', df_wine.columns[1:][k5])
knn.fit(X_train_std, y_train)
print('\nPerformance using all features:\n')
print('Training accuracy:', knn.score(X_train_std, y_train))
print('Test accuracy:', knn.score(X_test_std, y_test))
knn.fit(X_train_std[:, k5], y_train)
print('\nPerformance using the top 5 features:\n')
print('Training accuracy:', knn.score(X_train_std[:, k5], y_train))
print('Test accuracy:', knn.score(X_test_std[:, k5], y_test))
#############################################################################
print(50 * '=')
print('Section: Assessing Feature Importances with Random Forests')
print(50 * '-')
feat_labels = df_wine.columns[1:]
forest = RandomForestClassifier(n_estimators=10000,
random_state=0,
n_jobs=-1)
forest.fit(X_train, y_train)
importances = forest.feature_importances_
indices = np.argsort(importances)[::-1]
for f in range(X_train.shape[1]):
print("%2d) %-*s %f" % (f + 1, 30,
feat_labels[indices[f]],
importances[indices[f]]))
plt.title('Feature Importances')
plt.bar(range(X_train.shape[1]),
importances[indices],
color='lightblue',
align='center')
plt.xticks(range(X_train.shape[1]),
feat_labels[indices], rotation=90)
plt.xlim([-1, X_train.shape[1]])
# plt.tight_layout()
# plt.savefig('./random_forest.png', dpi=300)
plt.show()
X_selected = forest.transform(X_train, threshold=0.15)
X_selected.shape