import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from .datasets import make_wave from .plot_helpers import cm2 def plot_linear_regression_wave(): X, y = make_wave(n_samples=60) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) line = np.linspace(-3, 3, 100).reshape(-1, 1) lr = LinearRegression().fit(X_train, y_train) print("w[0]: %f b: %f" % (lr.coef_[0], lr.intercept_)) plt.figure(figsize=(8, 8)) plt.plot(line, lr.predict(line)) plt.plot(X, y, 'o', c=cm2(0)) ax = plt.gca() ax.spines['left'].set_position('center') ax.spines['right'].set_color('none') ax.spines['bottom'].set_position('center') ax.spines['top'].set_color('none') ax.set_ylim(-3, 3) #ax.set_xlabel("Feature") #ax.set_ylabel("Target") ax.legend(["model", "training data"], loc="best") ax.grid(True) ax.set_aspect('equal')