import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from .datasets import make_wave
from .plot_helpers import cm2


def plot_linear_regression_wave():
    X, y = make_wave(n_samples=60)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

    line = np.linspace(-3, 3, 100).reshape(-1, 1)

    lr = LinearRegression().fit(X_train, y_train)
    print("w[0]: %f  b: %f" % (lr.coef_[0], lr.intercept_))

    plt.figure(figsize=(8, 8))
    plt.plot(line, lr.predict(line))
    plt.plot(X, y, 'o', c=cm2(0))
    ax = plt.gca()
    ax.spines['left'].set_position('center')
    ax.spines['right'].set_color('none')
    ax.spines['bottom'].set_position('center')
    ax.spines['top'].set_color('none')
    ax.set_ylim(-3, 3)
    #ax.set_xlabel("Feature")
    #ax.set_ylabel("Target")
    ax.legend(["model", "training data"], loc="best")
    ax.grid(True)
    ax.set_aspect('equal')