forked from leoxiaobin/deep-high-resolution-net.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJointsDataset.py
executable file
·289 lines (229 loc) · 9.91 KB
/
JointsDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import logging
import random
import cv2
import numpy as np
import torch
from torch.utils.data import Dataset
from utils.transforms import get_affine_transform
from utils.transforms import affine_transform
from utils.transforms import fliplr_joints
logger = logging.getLogger(__name__)
class JointsDataset(Dataset):
def __init__(self, cfg, root, image_set, is_train, transform=None):
self.num_joints = 0
self.pixel_std = 200
self.flip_pairs = []
self.parent_ids = []
self.is_train = is_train
self.root = root
self.image_set = image_set
self.output_path = cfg.OUTPUT_DIR
self.data_format = cfg.DATASET.DATA_FORMAT
self.scale_factor = cfg.DATASET.SCALE_FACTOR
self.rotation_factor = cfg.DATASET.ROT_FACTOR
self.flip = cfg.DATASET.FLIP
self.num_joints_half_body = cfg.DATASET.NUM_JOINTS_HALF_BODY
self.prob_half_body = cfg.DATASET.PROB_HALF_BODY
self.color_rgb = cfg.DATASET.COLOR_RGB
self.target_type = cfg.MODEL.TARGET_TYPE
self.image_size = np.array(cfg.MODEL.IMAGE_SIZE)
self.heatmap_size = np.array(cfg.MODEL.HEATMAP_SIZE)
self.sigma = cfg.MODEL.SIGMA
self.use_different_joints_weight = cfg.LOSS.USE_DIFFERENT_JOINTS_WEIGHT
self.joints_weight = 1
self.transform = transform
self.db = []
def _get_db(self):
raise NotImplementedError
def evaluate(self, cfg, preds, output_dir, *args, **kwargs):
raise NotImplementedError
def half_body_transform(self, joints, joints_vis):
upper_joints = []
lower_joints = []
for joint_id in range(self.num_joints):
if joints_vis[joint_id][0] > 0:
if joint_id in self.upper_body_ids:
upper_joints.append(joints[joint_id])
else:
lower_joints.append(joints[joint_id])
if np.random.randn() < 0.5 and len(upper_joints) > 2:
selected_joints = upper_joints
else:
selected_joints = lower_joints \
if len(lower_joints) > 2 else upper_joints
if len(selected_joints) < 2:
return None, None
selected_joints = np.array(selected_joints, dtype=np.float32)
center = selected_joints.mean(axis=0)[:2]
left_top = np.amin(selected_joints, axis=0)
right_bottom = np.amax(selected_joints, axis=0)
w = right_bottom[0] - left_top[0]
h = right_bottom[1] - left_top[1]
if w > self.aspect_ratio * h:
h = w * 1.0 / self.aspect_ratio
elif w < self.aspect_ratio * h:
w = h * self.aspect_ratio
scale = np.array(
[
w * 1.0 / self.pixel_std,
h * 1.0 / self.pixel_std
],
dtype=np.float32
)
scale = scale * 1.5
return center, scale
def __len__(self,):
return len(self.db)
def __getitem__(self, idx):
db_rec = copy.deepcopy(self.db[idx])
image_file = db_rec['image']
filename = db_rec['filename'] if 'filename' in db_rec else ''
imgnum = db_rec['imgnum'] if 'imgnum' in db_rec else ''
if self.data_format == 'zip':
from utils import zipreader
data_numpy = zipreader.imread(
image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION
)
else:
data_numpy = cv2.imread(
image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION
)
if self.color_rgb:
data_numpy = cv2.cvtColor(data_numpy, cv2.COLOR_BGR2RGB)
if data_numpy is None:
logger.error('=> fail to read {}'.format(image_file))
raise ValueError('Fail to read {}'.format(image_file))
joints = db_rec['joints_3d']
joints_vis = db_rec['joints_3d_vis']
c = db_rec['center']
s = db_rec['scale']
score = db_rec['score'] if 'score' in db_rec else 1
r = 0
if self.is_train:
if (np.sum(joints_vis[:, 0]) > self.num_joints_half_body
and np.random.rand() < self.prob_half_body):
c_half_body, s_half_body = self.half_body_transform(
joints, joints_vis
)
if c_half_body is not None and s_half_body is not None:
c, s = c_half_body, s_half_body
sf = self.scale_factor
rf = self.rotation_factor
s = s * np.clip(np.random.randn()*sf + 1, 1 - sf, 1 + sf)
r = np.clip(np.random.randn()*rf, -rf*2, rf*2) \
if random.random() <= 0.6 else 0
if self.flip and random.random() <= 0.5:
data_numpy = data_numpy[:, ::-1, :]
joints, joints_vis = fliplr_joints(
joints, joints_vis, data_numpy.shape[1], self.flip_pairs)
c[0] = data_numpy.shape[1] - c[0] - 1
trans = get_affine_transform(c, s, r, self.image_size)
input = cv2.warpAffine(
data_numpy,
trans,
(int(self.image_size[0]), int(self.image_size[1])),
flags=cv2.INTER_LINEAR)
if self.transform:
input = self.transform(input)
for i in range(self.num_joints):
if joints_vis[i, 0] > 0.0:
joints[i, 0:2] = affine_transform(joints[i, 0:2], trans)
target, target_weight = self.generate_target(joints, joints_vis)
target = torch.from_numpy(target)
target_weight = torch.from_numpy(target_weight)
meta = {
'image': image_file,
'filename': filename,
'imgnum': imgnum,
'joints': joints,
'joints_vis': joints_vis,
'center': c,
'scale': s,
'rotation': r,
'score': score
}
return input, target, target_weight, meta
def select_data(self, db):
db_selected = []
for rec in db:
num_vis = 0
joints_x = 0.0
joints_y = 0.0
for joint, joint_vis in zip(
rec['joints_3d'], rec['joints_3d_vis']):
if joint_vis[0] <= 0:
continue
num_vis += 1
joints_x += joint[0]
joints_y += joint[1]
if num_vis == 0:
continue
joints_x, joints_y = joints_x / num_vis, joints_y / num_vis
area = rec['scale'][0] * rec['scale'][1] * (self.pixel_std**2)
joints_center = np.array([joints_x, joints_y])
bbox_center = np.array(rec['center'])
diff_norm2 = np.linalg.norm((joints_center-bbox_center), 2)
ks = np.exp(-1.0*(diff_norm2**2) / ((0.2)**2*2.0*area))
metric = (0.2 / 16) * num_vis + 0.45 - 0.2 / 16
if ks > metric:
db_selected.append(rec)
logger.info('=> num db: {}'.format(len(db)))
logger.info('=> num selected db: {}'.format(len(db_selected)))
return db_selected
def generate_target(self, joints, joints_vis):
'''
:param joints: [num_joints, 3]
:param joints_vis: [num_joints, 3]
:return: target, target_weight(1: visible, 0: invisible)
'''
target_weight = np.ones((self.num_joints, 1), dtype=np.float32)
target_weight[:, 0] = joints_vis[:, 0]
assert self.target_type == 'gaussian', \
'Only support gaussian map now!'
if self.target_type == 'gaussian':
target = np.zeros((self.num_joints,
self.heatmap_size[1],
self.heatmap_size[0]),
dtype=np.float32)
tmp_size = self.sigma * 3
for joint_id in range(self.num_joints):
feat_stride = self.image_size / self.heatmap_size
mu_x = int(joints[joint_id][0] / feat_stride[0] + 0.5)
mu_y = int(joints[joint_id][1] / feat_stride[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if ul[0] >= self.heatmap_size[0] or ul[1] >= self.heatmap_size[1] \
or br[0] < 0 or br[1] < 0:
# If not, just return the image as is
target_weight[joint_id] = 0
continue
# # Generate gaussian
size = 2 * tmp_size + 1
x = np.arange(0, size, 1, np.float32)
y = x[:, np.newaxis]
x0 = y0 = size // 2
# The gaussian is not normalized, we want the center value to equal 1
g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * self.sigma ** 2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], self.heatmap_size[0]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], self.heatmap_size[1]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], self.heatmap_size[0])
img_y = max(0, ul[1]), min(br[1], self.heatmap_size[1])
v = target_weight[joint_id]
if v > 0.5:
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
if self.use_different_joints_weight:
target_weight = np.multiply(target_weight, self.joints_weight)
return target, target_weight