-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathformatting.py
267 lines (213 loc) · 8.67 KB
/
formatting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import re
from enum import Enum
from itertools import zip_longest
from random import random, shuffle
from typing import Literal, Optional
from pydantic import BaseModel, validator
from pydantic.fields import ModelField
QA_SPECIAL_TOKENS = {
"Question": "<|prompter|>",
"Answer": "<|assistant|>",
"System": "<|system|>",
"StartPrefix": "<|prefix_begin|>",
"EndPrefix": "<|prefix_end|>",
}
def format_system_prefix(prefix, eos_token):
return "{}{}{}".format(
QA_SPECIAL_TOKENS["System"],
prefix,
eos_token,
)
def compute_length(s: str) -> int:
return len(re.findall(r"\w+", s)) // 5 + 1
class Mode(str, Enum):
sft = "sft"
rm = "rm"
rl = "rl"
class Role(str, Enum):
prompter = "prompter"
assistant = "assistant"
class Utterance(BaseModel):
text: str
role: Role
lang: str | None = None
quality: float | None = None
humor: float | None = None
creativity: float | None = None
context: str | None = None
@validator("quality", "humor", "creativity")
def between_0_1(cls, v, field: ModelField) -> float:
if v is not None and not (0 <= v <= 1):
raise ValueError(f"Field {field.name} must be between 0 and 1. Received: {v}")
return v
def system_tag(
self,
eos_token: str,
enabled: bool = True,
property_dropout: float = 0.0,
add_length: bool = True,
) -> str:
if not enabled:
return ""
properties: list[tuple[float | str]] = []
for k, v in self.dict().items():
if v is not None and k in ["lang", "quality", "humor", "creativity"]:
properties.append((k, v))
if add_length:
properties.append(("length", compute_length(self.text)))
shuffle(properties)
# ensure that potentially multi-line conext field comes last
if self.context:
properties.append(("context", self.context))
fragments: list[str] = []
for k, v in properties:
if random() < property_dropout:
continue
if isinstance(v, float):
fragments.append(f"{k}: {v:0.1f}")
elif isinstance(v, str):
if not v.isspace(): # ignore whitespace-only values
fragments.append(f"{k}: {v}")
else:
fragments.append(f"{k}: {v}")
if len(fragments) == 0:
return ""
content = "\n".join(fragments)
return f"{QA_SPECIAL_TOKENS['System']}{content}\n{eos_token}"
class DatasetEntry(BaseModel):
pass
class DatasetEntryLm(DatasetEntry):
"""Language modelling dataset entry"""
text: str | None = None
class DatasetEntrySft(DatasetEntry):
"""Supervised fine-tuning conversation dataset entry"""
conversation: list[Utterance]
system_message: Optional[str]
def get_formatted(
self,
eos_token: str,
use_system_tag: bool = False,
system_property_dropout: float = 0.5,
system_add_length: bool = False,
) -> list[str]:
output: list[str] = []
for i, m in enumerate(self.conversation):
if m.role == Role.prompter:
if use_system_tag and i + 1 < len(self.conversation):
a = self.conversation[i + 1]
assert a.role == Role.assistant
system_tag = a.system_tag(
eos_token=eos_token,
property_dropout=system_property_dropout,
add_length=system_add_length,
)
else:
system_tag = ""
if i == 0 and self.system_message:
output.append(
f"{QA_SPECIAL_TOKENS['System']}{self.system_message}{eos_token}{QA_SPECIAL_TOKENS['Question']}{m.text}{eos_token}{system_tag}"
)
else:
output.append(f"{QA_SPECIAL_TOKENS['Question']}{m.text}{eos_token}{system_tag}")
else:
output.append(f"{QA_SPECIAL_TOKENS['Answer']}{m.text}{eos_token}")
return output
class DatasetEntryRm(DatasetEntry):
"""Reward model dataset entry (conversation history + ranked replies)"""
messages: list[Utterance] | None # conversation history
replies: list[Utterance] # ordered reply variants, best first
def get_formatted(
self,
eos_token: str,
use_system_tag: bool = False,
system_property_dropout: float = 0.5,
system_add_length: bool = False,
max_replies: int = 5,
) -> tuple[str, list[str]]:
reply_variants = self.replies
if len(reply_variants) > max_replies:
reply_variants = reply_variants[:max_replies]
# special handling for non-dialogue datasets like Hellaswag
if self.messages is None or len(self.messages) == 1 and self.messages[0] is None:
prefix = ""
replies = [r.text + eos_token for r in reply_variants]
return prefix, replies
assert len(self.messages) > 0 and self.messages[-1].role == Role.prompter
# format conversation history (prefix)
prefix_messages: list[str] = []
for i, m in enumerate(self.messages):
if m.role == Role.prompter:
prefix_messages.append(f"{QA_SPECIAL_TOKENS['Question']}{m.text}{eos_token}")
else:
if use_system_tag:
assert m.role == Role.assistant
system_tag = m.system_tag(
eos_token=eos_token,
property_dropout=system_property_dropout,
add_length=system_add_length,
)
else:
system_tag = ""
prefix_messages.append(f"{system_tag}{QA_SPECIAL_TOKENS['Answer']}{m.text}{eos_token}")
prefix = "".join(prefix_messages)
# format reply variants
replies: list[str] = []
for r in reply_variants:
assert r.role == Role.assistant
if use_system_tag:
system_tag = r.system_tag(
eos_token=eos_token,
property_dropout=system_property_dropout,
add_length=system_add_length,
)
else:
system_tag = ""
replies.append(f"{system_tag}{QA_SPECIAL_TOKENS['Answer']}{r.text}{eos_token}")
return prefix, replies
def create_dataset_entry_qa(
mode: Mode | Literal["sft", "rm", "rl"],
questions: list[str],
answers: list[str] | list[list[str]],
context: Optional[str] = None,
lang: Optional[str] = None,
) -> DatasetEntry:
"""Helper function to create DatasetEntry objects (DatasetEntrySft or DatasetEntryRm) for simple
Q&A datasets."""
if mode == Mode.sft:
messages: list[Utterance] = []
for q, a in zip_longest(questions, answers):
messages.append(Utterance(text=q, role=Role.prompter, lang=lang))
if isinstance(a, list):
a = a[0]
messages.append(Utterance(text=a, role=Role.assistant, lang=lang, context=context))
return DatasetEntrySft(conversation=messages)
elif mode == Mode.rm:
if len(questions) != 1:
raise RuntimeError("QA dataset entry factory does not support multi-turn conversation for the RM case.")
if len(answers) == 1 and isinstance(answers[0], list):
answers = answers[0]
assert isinstance(answers, list) and len(answers) > 1 and isinstance(answers[0], str)
conversation_history = [Utterance(text=questions[0], role=Role.prompter, lang=lang)]
reply_variants = [Utterance(text=a, role=Role.assistant, lang=lang, context=context) for a in answers]
return DatasetEntryRm(messages=conversation_history, replies=reply_variants)
# elif mode == Mode.rl:
else:
raise RuntimeError(f"Unsupported mode ({mode=})")
def format_pairs(
pairs: list[str],
eos_token: str,
add_initial_reply_token: bool = False,
) -> list[str]:
assert isinstance(pairs, list)
conversations = [
"{}{}{}".format(QA_SPECIAL_TOKENS["Question" if i % 2 == 0 else "Answer"], pairs[i], eos_token)
for i in range(len(pairs))
]
if add_initial_reply_token:
conversations.append(QA_SPECIAL_TOKENS["Answer"])
return conversations
def format_rl_text(pairs: list[str]) -> str:
# convert question answer pairs to only the prefix prompt for RLHF
return "{}{}{}".format(QA_SPECIAL_TOKENS["Question"], pairs[0], QA_SPECIAL_TOKENS["Answer"])
def format_reply(text: str, eos_token: str) -> str:
return "{}{}{}".format(QA_SPECIAL_TOKENS["Answer"], text, eos_token)