-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy path__init__.py
204 lines (187 loc) · 7.54 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""
High level functions for model training
"""
from typing import Optional
import numpy as np
from model_training.custom_datasets.extra_rm_datasets import load_anthropic_rlhf, load_hellaswag, load_shp
from model_training.custom_datasets.instruction import (
INSTRUCTION_DATASETS,
RAG_DATASETS,
InstructionDataset,
RAGDataset,
)
from model_training.custom_datasets.oasst_dataset import load_oasst_export
from model_training.custom_datasets.pretrain_datasets import FanFics, RedPajama
from model_training.custom_datasets.prompt_dialogue import DolphinMix, Gpt4All, OrcaChat, load_oig_file
from model_training.custom_datasets.qa_datasets import (
SODA,
AlpacaGpt4,
DatabricksDolly15k,
Dolly15kMultilingual,
GPTeacher_Roleplay,
JokeExplaination,
QADataset,
SODADialogue,
TranslatedQA,
Vicuna,
WebGPT,
WizardEvolInstructV2,
load_alpaca_dataset,
)
from model_training.custom_datasets.rank_datasets import AugmentedOA
from model_training.custom_datasets.summarization import HFSummary, HFSummaryPairs, SummarizationDataset
from model_training.custom_datasets.toxic_conversation import ProsocialDialogue, ProsocialDialogueExplaination
from model_training.custom_datasets.translation import WMT2019, DiveMT, TEDTalk
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, Subset
QA_DATASETS = list(QADataset.DATASET_FORMAT_MAPPING.keys())
SUMMARIZATION_DATASETS = [
"xsum",
"cnn_dailymail",
"samsum",
"multi_news",
"scitldr",
"billsum",
"debate_sum",
"tldr_news",
]
OTHER = [
"prosocial_dialogue",
"explain_prosocial",
"private_tuning",
"oa_translated",
]
RL_DATASETS = [
"oasst_export",
"webgpt",
"private_tuning",
"alpaca",
"hf_summary",
"hf_summary_pairs",
"vicuna",
]
RM_DATASETS = [
"oasst_export",
"augment_oasst",
"anthropic_rlhf",
"hf_summary",
"hf_summary_pairs",
"shp",
"hellaswag",
"webgpt",
]
def train_val_dataset(dataset, val_split=0.2) -> tuple[Dataset, Dataset | None]:
if val_split == 0:
return dataset, None
train_idx, val_idx = train_test_split(
list(range(len(dataset))), test_size=val_split, random_state=666, shuffle=True
)
return Subset(dataset, train_idx), Subset(dataset, val_idx)
def get_one_dataset(
conf,
dataset_name: str,
val_split: float = 0.2,
data_path: str = None,
mode: str = "sft",
max_val_set: Optional[int] = None,
**kwargs,
) -> tuple[Dataset, Dataset | None]:
if mode == "rl":
assert dataset_name in RL_DATASETS, f"Dataset {dataset_name} not supported for RL"
if mode == "rm":
assert dataset_name in RM_DATASETS, f"Dataset {dataset_name} not supported for reward modeling"
data_path = data_path or conf.cache_dir
dataset_name = dataset_name.lower()
if dataset_name in QA_DATASETS:
dataset = QADataset(dataset_name, data_path, "train")
if not dataset.no_val:
eval = QADataset(dataset_name, data_path, "validation")
train = dataset
elif dataset_name in SUMMARIZATION_DATASETS:
dataset = SummarizationDataset(dataset_name, data_path, "train")
if dataset_name != "debate_sum":
eval = SummarizationDataset(dataset_name, data_path, "validation")
train = dataset
elif dataset_name in INSTRUCTION_DATASETS:
dataset_args = INSTRUCTION_DATASETS[dataset_name]
dataset = InstructionDataset(name=dataset_name, cache_dir=data_path, split="train", **(dataset_args | kwargs))
elif "ted_trans" in dataset_name:
language_pair = dataset_name.split("_")[-1]
dataset = TEDTalk(pair=language_pair, split="train")
elif "wmt2019" in dataset_name:
language_pair = dataset_name.split("_")[-1]
train = WMT2019(pair=language_pair, split="train")
eval = WMT2019(pair=language_pair, split="validation")
elif dataset_name == "dive_mt":
dataset = DiveMT()
elif dataset_name == "webgpt":
dataset = WebGPT(mode=mode)
elif dataset_name in ("alpaca", "code_alpaca"):
train, eval = load_alpaca_dataset(dataset_name, val_split=val_split, cache_dir=data_path, **kwargs)
elif dataset_name == "gpt4all":
dataset = Gpt4All(mode=mode, cache_dir=data_path)
elif dataset_name == "prosocial_dialogue":
dataset = ProsocialDialogue(cache_dir=data_path, split="train")
elif dataset_name == "explain_prosocial":
dataset = ProsocialDialogueExplaination(cache_dir=data_path, split="train")
elif dataset_name == "soda":
dataset = SODA(data_path, **kwargs)
elif dataset_name == "soda_dialogue":
dataset = SODADialogue(data_path)
elif dataset_name == "joke":
dataset = JokeExplaination(data_path)
elif dataset_name == "oa_translated":
# TODO make val_split lower..? by saganos
dataset = TranslatedQA(data_path)
elif dataset_name == "vicuna":
dataset = Vicuna(cache_dir=data_path, **kwargs)
elif dataset_name == "wizard_evol_instruct_v2":
dataset = WizardEvolInstructV2(cache_dir=data_path, **kwargs)
elif dataset_name == "oasst_export":
train, eval = load_oasst_export(data_path=data_path, val_split=val_split, mode=mode, **kwargs)
elif dataset_name == "hf_summary":
train = HFSummary(split="train", mode=mode)
eval = HFSummary(split="valid1", mode=mode)
elif dataset_name == "hf_summary_pairs":
train = HFSummaryPairs(split="train", mode=mode)
eval = HFSummaryPairs(split="valid1", mode=mode)
elif dataset_name == "augment_oasst":
# reward model mode only
assert mode == "rm"
train = AugmentedOA(data_path + "/" + kwargs["input_file_path"], split="train")
eval = AugmentedOA(data_path + "/" + kwargs["input_file_path"], split="val")
elif dataset_name == "oig_file":
train, eval = load_oig_file(val_split=val_split, **kwargs)
elif dataset_name == "anthropic_rlhf":
train, eval = load_anthropic_rlhf()
elif dataset_name == "shp":
train, eval = load_shp()
elif dataset_name == "hellaswag":
train, eval = load_hellaswag()
elif dataset_name == "dolly15k":
dataset = DatabricksDolly15k(cache_dir=data_path, mode=mode, **kwargs)
elif dataset_name == "dolly15k_multilingual":
dataset = Dolly15kMultilingual(cache_dir=data_path, mode=mode, **kwargs)
elif dataset_name == "alpaca_gpt4":
dataset = AlpacaGpt4(cache_dir=data_path, mode=mode, **kwargs)
elif dataset_name == "red_pajama":
dataset = RedPajama(cache_dir=data_path, mode=mode, **kwargs)
elif dataset_name == "fanfics":
dataset = FanFics(cache_dir=data_path, mode=mode, **kwargs)
elif dataset_name == "gpteacher_roleplay":
dataset = GPTeacher_Roleplay(cache_dir=data_path, mode=mode, **kwargs)
elif dataset_name == "orca-chat":
dataset = OrcaChat(cache_dir=data_path, **kwargs)
elif dataset_name == "dolphin-mix":
dataset = DolphinMix(cache_dir=data_path, **kwargs)
elif dataset_name in RAG_DATASETS.keys():
dataset = RAGDataset(dataset_name, cache_dir=data_path, **kwargs)
else:
raise ValueError(f"Unknown dataset {dataset_name}")
# if eval not already defined
if not ("eval" in locals() and "train" in locals()):
train, eval = train_val_dataset(dataset, val_split=val_split)
if eval and max_val_set and len(eval) > max_val_set:
subset_indices = np.random.choice(len(eval), size=max_val_set, replace=False)
eval = Subset(eval, subset_indices)
return train, eval