-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathformatting.py
170 lines (146 loc) · 6.54 KB
/
formatting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from itertools import zip_longest
from random import random, shuffle
from langcodes import Language
from model_training.custom_datasets.entities import Mode
from pydantic import BaseModel, validator
from pydantic.fields import ModelField
SYSTEM_PROPERTY_DROP_PROBA = 0.5
QA_SPECIAL_TOKENS = {
"Question": "<|prompter|>",
"Answer": "<|assistant|>",
"System": "<|system|>",
"StartPrefix": "<|prefix_begin|>",
"EndPrefix": "<|prefix_end|>",
}
def format_system_prefix(prefix, eos_token):
return "{}{}{}".format(
QA_SPECIAL_TOKENS["System"],
prefix,
eos_token,
)
class PretrainDatasetEntry(BaseModel):
text: str | None = None
class DatasetEntry(BaseModel):
questions: list[str]
answers: list[str] | list[list[str]]
context: str | None = None
lang: str | None = None
length: int | None = None
quality: float | None = None
humor: float | None = None
creativity: float | None = None
@validator("lang")
def valid_lang(cls, v) -> str | None:
if v is not None:
if not (lang := Language.get(v)).is_valid():
raise ValueError(f"Language {v} is not valid. Please provide BCP 47 compatible language codes.")
return str(lang)
@validator("length")
def above_zero(cls, v) -> int:
if v is not None and v < 0:
raise ValueError(f"Length cannot be lower than 0. Received {v}")
return v
@validator("quality", "humor", "creativity")
def between_0_1(cls, v, field: ModelField) -> float:
if v is not None and not (0 <= v <= 1):
raise ValueError(f"Field {field.name} must be between 0 and 1. Received {v}.")
return round(v, 1)
def system_tag(self, eos_token: str) -> str | None:
relevant_system_infos = [
(k, v)
for k, v in self.__dict__.items()
if k not in ["questions", "answers"]
and v is not None
and str(v).replace("\n", "")
and random() > SYSTEM_PROPERTY_DROP_PROBA
]
if len(relevant_system_infos) > 0:
shuffle(relevant_system_infos)
system_tag_key_values = "\n".join([f"{k}: {v}" for k, v in relevant_system_infos])
system_tag = f"{QA_SPECIAL_TOKENS['System']}{system_tag_key_values}\n{eos_token}"
return system_tag
def _get_formatted_rm(self, eos_token: str, max_replies: int, system_tag: None | str):
if isinstance(self.answers[0], list):
answers = self.answers[0]
else:
answers = self.answers
assert len(answers) > 1 and max_replies > 1
answers = answers[:max_replies]
match len(self.questions):
case 0:
question = ""
# todo: not sure if this case is correct but it is equivalent to current non-dataset entry behaviour
answers = [f"{a}{eos_token}" for a in answers]
case 1:
question = f"{QA_SPECIAL_TOKENS['Question']}{self.questions[0]}{eos_token}"
answers = [f"{QA_SPECIAL_TOKENS['Answer']}{a}{eos_token}" for a in answers]
case _:
raise ValueError("Received more than one question in RM mode. This is unexpected. Aborting")
if system_tag is not None:
question = f"{system_tag}{question}"
return (question, answers)
def get_formatted(self, mode: Mode, eos_token: str, **kwargs) -> str | list[str] | tuple[str, list[str]]:
system_tag = self.system_tag(eos_token)
if mode == Mode.rl:
if system_tag is not None:
return f"{system_tag}{QA_SPECIAL_TOKENS['Question']}{self.questions[0]}{QA_SPECIAL_TOKENS['Answer']}"
else:
return f"{QA_SPECIAL_TOKENS['Question']}{self.questions[0]}{QA_SPECIAL_TOKENS['Answer']}"
elif mode == Mode.rm:
return self._get_formatted_rm(
eos_token=eos_token, max_replies=kwargs.get("max_replies", 5), system_tag=system_tag
)
else:
if system_tag is not None:
qa_list = [system_tag]
else:
qa_list = list()
# check if this is a RM capable dataset (so it has multiple answers to the same question)
# and if so, extract just the highest scoring answer
if isinstance(self.answers[0], list):
answers = [answer[0] for answer in self.answers]
else:
answers = self.answers
for q, a in zip_longest(self.questions, answers):
match (q, a):
case (str(), str()):
qa_list.extend(
[
f"{QA_SPECIAL_TOKENS['Question']}{q}{eos_token}",
f"{QA_SPECIAL_TOKENS['Answer']}{a}{eos_token}",
]
)
case (str(), None):
qa_list.append(f"{QA_SPECIAL_TOKENS['Question']}{q}{eos_token}")
case (None, None):
break
case (None, str()):
raise ValueError("Received answer without getting corresponding question. Aborting")
return qa_list
@classmethod
def create_from_prompter_assistant_interplay(cls, qa: dict[str, str]):
"""Creates a DatasetEntry from a qa of given structure. Even if qa contains consecutative assistant or prompter phrases.
Returns:
self: DatasetEntry class
"""
# todo: implement
NotImplementedError("Function not implemented currently.")
def format_pairs(
pairs: list[str] | DatasetEntry, eos_token: str, add_initial_reply_token: str = False, mode: Mode | None = None
) -> list[str]:
if isinstance(pairs, DatasetEntry) and mode is not None:
return pairs.get_formatted(mode=mode, eos_token=eos_token)
else:
# backwards compatibility
conversations = [
"{}{}{}".format(QA_SPECIAL_TOKENS["Question" if i % 2 == 0 else "Answer"], pairs[i], eos_token)
for i in range(len(pairs))
]
if add_initial_reply_token:
conversations.append(QA_SPECIAL_TOKENS["Answer"])
return conversations
def format_rl_text(pairs: list[str]) -> str:
# convert question answer pairs to only the prefix prompt for RLHF
return "{}{}{}".format(QA_SPECIAL_TOKENS["Question"], pairs[0], QA_SPECIAL_TOKENS["Answer"])
def format_reply(text: str, eos_token: str) -> str:
return "{}{}{}".format(QA_SPECIAL_TOKENS["Answer"], text, eos_token)