forked from google/next-prediction
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
139 lines (118 loc) · 2.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""Utils."""
import cv2
# These are the activities we care
activity2id = {
"BG": 0, # background
"activity_walking": 1,
"activity_standing": 2,
"activity_carrying": 3,
"activity_gesturing": 4,
"Closing": 5,
"Opening": 6,
"Interacts": 7,
"Exiting": 8,
"Entering": 9,
"Talking": 10,
"Transport_HeavyCarry": 11,
"Unloading": 12,
"Pull": 13,
"Loading": 14,
"Open_Trunk": 15,
"Closing_Trunk": 16,
"Riding": 17,
"specialized_texting_phone": 18,
"Person_Person_Interaction": 19,
"specialized_talking_phone": 20,
"activity_running": 21,
"PickUp": 22,
"specialized_using_tool": 23,
"SetDown": 24,
"activity_crouching": 25,
"activity_sitting": 26,
"Object_Transfer": 27,
"Push": 28,
"PickUp_Person_Vehicle": 29,
}
object2id = {
"Person": 0,
"Vehicle": 1,
"Parking_Meter": 2,
"Construction_Barrier": 3,
"Door": 4,
"Push_Pulled_Object": 5,
"Construction_Vehicle": 6,
"Prop": 7,
"Bike": 8,
"Dumpster": 9,
}
actev_scene2imgsize = {
"0002": (1280.0, 720.0),
"0000": (1920.0, 1080.0),
"0400": (1920.0, 1080.0),
"0401": (1920.0, 1080.0),
"0500": (1920.0, 1080.0),
}
def get_scene(videoname):
"""ActEV scene extractor from videoname."""
s = videoname.split("_S_")[-1]
s = s.split("_")[0]
return s[:4]
# actev boxes may contain some errors
# won't fix x,y reversed
def modify_box(bbox, imgsize):
"""Modify ActEV boxes."""
w, h = imgsize
x1, y1, x2, y2 = bbox
x_min = min(x1, x2)
x_max = max(x1, x2)
y_min = min(y1, y2)
y_max = max(y1, y2)
x_min = min(w, x_min)
x_max = min(w, x_max)
y_min = min(h, y_min)
y_max = min(h, y_max)
return [x_min, y_min, x_max, y_max]
def valid_box(box, wh):
"""Check whether boxes are within the image bounds."""
w, h = wh
a = box_area(box)
if a <= 0:
return False
if (box[0] > w) or (box[2] > w) or (box[1] > h) or (box[3] > h):
return False
return True
def box_area(box):
"""compute bbox area size in pixels."""
x1, y1, x2, y2 = box
w = x2 - x1
h = y2 - y1
return float(w) * h
# given x1,y1,x2,y2 box,
# get the feet location.
def get_traj_point(box):
"""Get person traj point given person boxes."""
x1, _, x2, y2 = box
return [(x1 + x2) / 2.0, y2]
def resize_image(im, short_size, max_size):
"""Duh."""
h, w = im.shape[:2]
neww, newh = get_new_hw(h, w, short_size, max_size)
return cv2.resize(im, (neww, newh), interpolation=cv2.INTER_LINEAR)
def get_new_hw(h, w, size, max_size):
"""Get the new h,w, keeping original ratio."""
scale = size * 1.0 / min(h, w)
if h < w:
newh, neww = size, scale * w
else:
newh, neww = scale * h, size
if max(newh, neww) > max_size:
scale = max_size * 1.0 / max(newh, neww)
newh = newh * scale
neww = neww * scale
neww = int(neww + 0.5)
newh = int(newh + 0.5)
return neww, newh