@@ -179,6 +179,14 @@ def validate(config, val_loader, val_dataset, model, criterion, output_dir,
179
179
all_boxes [idx :idx + num_images , 4 ] = np .prod (s * 200 , 1 )
180
180
all_boxes [idx :idx + num_images , 5 ] = score
181
181
image_path .extend (meta ['image' ])
182
+
183
+ # output the result per image
184
+ this_pred = all_preds [idx :idx + num_images , :, 0 :3 ] # (batch_size, 17, 3)
185
+ #assert len(meta['image']) == len(this_pred) == len(meta['pid']), (len(meta['image']), this_pred.shape, len(meta['pid']))
186
+ for i in range (len (this_pred )):
187
+ imgname = os .path .splitext (os .path .basename (meta ['image' ][i ]))[0 ]
188
+ target_file = os .path .join (config .OUTPUT_DIR , "%s_%s.npy" % (imgname , int (meta ['pid' ][i ])))
189
+ np .save (target_file , this_pred [i ])
182
190
183
191
idx += num_images
184
192
@@ -196,7 +204,7 @@ def validate(config, val_loader, val_dataset, model, criterion, output_dir,
196
204
)
197
205
save_debug_images (config , input , meta , target , pred * 4 , output ,
198
206
prefix )
199
-
207
+ return None # added by Junwei. We only need to run inference
200
208
name_values , perf_indicator = val_dataset .evaluate (
201
209
config , all_preds , output_dir , all_boxes , image_path ,
202
210
filenames , imgnums
0 commit comments