|
| 1 | +# coding=utf-8 |
| 2 | +"""Given the dataset object, make a multiprocess/thread enqueuer""" |
| 3 | +import os |
| 4 | +import queue |
| 5 | +import threading |
| 6 | +import contextlib |
| 7 | +import multiprocessing |
| 8 | +import time |
| 9 | +import random |
| 10 | +import sys |
| 11 | +import utils |
| 12 | +import traceback |
| 13 | +import numpy as np |
| 14 | + |
| 15 | +# TODo: checkout https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader |
| 16 | +# ------------------------------- the following is only needed for multiprocess |
| 17 | +# multiprocess is only good for video inputs (num_workers=num_core) |
| 18 | +# multithreading is good enough for frame inputs |
| 19 | +# and somehow the optimal num_workers=4, for many kinds of machine with threads |
| 20 | + |
| 21 | +# Global variables to be shared across processes |
| 22 | +_SHARED_DATASETS = {} |
| 23 | +# We use a Value to provide unique id to different processes. |
| 24 | +_SEQUENCE_COUNTER = None |
| 25 | +# Because multiprocessing pools are inherently unsafe, starting from a clean |
| 26 | +# state can be essential to avoiding deadlocks. In order to accomplish this, we |
| 27 | +# need to be able to check on the status of Pools that we create. |
| 28 | +_WORKER_ID_QUEUE = None # Only created if needed. |
| 29 | + |
| 30 | +# modified from keras |
| 31 | +class DatasetEnqueuer(object): |
| 32 | + def __init__(self, dataset, prefetch=5, num_workers=1, |
| 33 | + start=True, # start the dataset get thread when init |
| 34 | + shuffle=False, |
| 35 | + # whether to break down each mini-batch for each gpu |
| 36 | + is_multi_gpu=False, |
| 37 | + last_full_batch=False, # make sure the last batch is full |
| 38 | + use_process=False, # use process instead of thread |
| 39 | + ): |
| 40 | + self.dataset = dataset |
| 41 | + |
| 42 | + self.prefetch = prefetch # how many batch to save in queue |
| 43 | + self.max_queue_size = int(self.prefetch * dataset.batch_size) |
| 44 | + |
| 45 | + self.workers = num_workers |
| 46 | + self.queue = None |
| 47 | + self.run_thread = None # the thread to spawn others |
| 48 | + self.stop_signal = None |
| 49 | + |
| 50 | + self.cur_batch_count = 0 |
| 51 | + |
| 52 | + self.shuffle = shuffle |
| 53 | + |
| 54 | + self.use_process = use_process |
| 55 | + |
| 56 | + self.is_multi_gpu = is_multi_gpu |
| 57 | + self.last_full_batch = last_full_batch |
| 58 | + |
| 59 | + # need to have a global uid for each enqueuer so we could use train/val |
| 60 | + # at the same time |
| 61 | + global _SEQUENCE_COUNTER |
| 62 | + if _SEQUENCE_COUNTER is None: |
| 63 | + try: |
| 64 | + _SEQUENCE_COUNTER = multiprocessing.Value('i', 0) |
| 65 | + except OSError: |
| 66 | + # In this case the OS does not allow us to use |
| 67 | + # multiprocessing. We resort to an int |
| 68 | + # for enqueuer indexing. |
| 69 | + _SEQUENCE_COUNTER = 0 |
| 70 | + |
| 71 | + if isinstance(_SEQUENCE_COUNTER, int): |
| 72 | + self.uid = _SEQUENCE_COUNTER |
| 73 | + _SEQUENCE_COUNTER += 1 |
| 74 | + else: |
| 75 | + # Doing Multiprocessing.Value += x is not process-safe. |
| 76 | + with _SEQUENCE_COUNTER.get_lock(): |
| 77 | + self.uid = _SEQUENCE_COUNTER.value |
| 78 | + _SEQUENCE_COUNTER.value += 1 |
| 79 | + |
| 80 | + if start: |
| 81 | + self.start() |
| 82 | + |
| 83 | + def is_running(self): |
| 84 | + return self.stop_signal is not None and not self.stop_signal.is_set() |
| 85 | + |
| 86 | + def start(self): |
| 87 | + if self.use_process: |
| 88 | + self.executor_fn = self._get_executor_init(self.workers) |
| 89 | + else: |
| 90 | + self.executor_fn = lambda _: multiprocessing.pool.ThreadPool(self.workers) |
| 91 | + |
| 92 | + self.queue = queue.Queue(self.max_queue_size) |
| 93 | + self.stop_signal = threading.Event() |
| 94 | + |
| 95 | + self.run_thread = threading.Thread(target=self._run) |
| 96 | + self.run_thread.daemon = True |
| 97 | + self.run_thread.start() |
| 98 | + |
| 99 | + def _get_executor_init(self, workers): |
| 100 | + """Gets the Pool initializer for multiprocessing. |
| 101 | +
|
| 102 | + Arguments: |
| 103 | + workers: Number of workers. |
| 104 | +
|
| 105 | + Returns: |
| 106 | + Function, a Function to initialize the pool |
| 107 | + """ |
| 108 | + def pool_fn(seqs): |
| 109 | + pool = multiprocessing.Pool( |
| 110 | + workers, initializer=init_pool_generator, |
| 111 | + initargs=(seqs, None, get_worker_id_queue())) |
| 112 | + return pool |
| 113 | + |
| 114 | + return pool_fn |
| 115 | + |
| 116 | + def stop(self): |
| 117 | + #print("stop called") |
| 118 | + if self.is_running(): |
| 119 | + self._stop() |
| 120 | + |
| 121 | + def _stop(self): |
| 122 | + #print("_stop called") |
| 123 | + self.stop_signal.set() |
| 124 | + with self.queue.mutex: |
| 125 | + self.queue.queue.clear() |
| 126 | + self.queue.unfinished_tasks = 0 |
| 127 | + self.queue.not_full.notify() |
| 128 | + |
| 129 | + self.run_thread.join(0) |
| 130 | + |
| 131 | + _SHARED_DATASETS[self.uid] = None |
| 132 | + |
| 133 | + def __del__(self): |
| 134 | + if self.is_running(): |
| 135 | + self._stop() |
| 136 | + |
| 137 | + def _send_dataset(self): |
| 138 | + """Sends current Iterable to all workers.""" |
| 139 | + # For new processes that may spawn |
| 140 | + _SHARED_DATASETS[self.uid] = self.dataset |
| 141 | + |
| 142 | + # preprocess the data and put them into queue |
| 143 | + def _run(self): |
| 144 | + batch_idxs = list(self.dataset.valid_idxs) * self.dataset.num_epochs |
| 145 | + |
| 146 | + if self.shuffle: |
| 147 | + batch_idxs = random.sample(batch_idxs, len(batch_idxs)) |
| 148 | + batch_idxs = random.sample(batch_idxs, len(batch_idxs)) |
| 149 | + |
| 150 | + if self.last_full_batch: |
| 151 | + # make sure the batch_idxs are multiplier of batch_size |
| 152 | + batch_idxs += [batch_idxs[-1] for _ in range( |
| 153 | + self.dataset.batch_size - len(batch_idxs) % self.dataset.batch_size)] |
| 154 | + |
| 155 | + self._send_dataset() # Share the initial dataset |
| 156 | + |
| 157 | + while True: |
| 158 | + #with contextlib.closing( |
| 159 | + # multiprocessing.pool.ThreadPool(self.workers)) as executor: |
| 160 | + with contextlib.closing( |
| 161 | + self.executor_fn(_SHARED_DATASETS)) as executor: |
| 162 | + for idx in batch_idxs: |
| 163 | + if self.stop_signal.is_set(): |
| 164 | + return |
| 165 | + # block until not full |
| 166 | + #self.queue.put( |
| 167 | + # executor.apply_async(self.dataset.get_sample, (idx,)), block=True) |
| 168 | + self.queue.put( |
| 169 | + executor.apply_async(get_index, (self.uid, idx)), block=True) |
| 170 | + |
| 171 | + self._wait_queue() |
| 172 | + if self.stop_signal.is_set(): |
| 173 | + # We're done |
| 174 | + return |
| 175 | + |
| 176 | + self._send_dataset() # Update the pool |
| 177 | + |
| 178 | + # get batch from the queue |
| 179 | + # toDo: this is single thread, put the batch collecting into multi-thread |
| 180 | + def get(self): |
| 181 | + if not self.is_running(): |
| 182 | + self.start() |
| 183 | + try: |
| 184 | + while self.is_running(): |
| 185 | + if self.cur_batch_count == self.dataset.num_batches: |
| 186 | + self._stop() |
| 187 | + return |
| 188 | + |
| 189 | + samples = [] |
| 190 | + for i in range(self.dataset.batch_size): |
| 191 | + # first get got the ApplyResult object, |
| 192 | + # then second get to get the actual thing (block till get) |
| 193 | + sample = self.queue.get(block=True).get() |
| 194 | + self.queue.task_done() |
| 195 | + samples.append(sample) |
| 196 | + |
| 197 | + # break the mini-batch into mini-batches for multi-gpu |
| 198 | + if self.is_multi_gpu: |
| 199 | + # a list of [frames, boxes, labels_arr, ori_boxes, box_keys] |
| 200 | + batches = [] |
| 201 | + |
| 202 | + this_batch_idxs = range(len(samples)) |
| 203 | + |
| 204 | + # pack these batches for each gpu |
| 205 | + this_batch_idxs_gpus = utils.grouper( |
| 206 | + this_batch_idxs, self.dataset.batch_size_per_gpu) |
| 207 | + batches = [] |
| 208 | + for this_batch_idxs_per_gpu in this_batch_idxs_gpus: |
| 209 | + batches.append(self.dataset.collect_batch( |
| 210 | + samples, this_batch_idxs_per_gpu)) |
| 211 | + |
| 212 | + batch = batches |
| 213 | + else: |
| 214 | + batch = self.dataset.collect_batch(samples) |
| 215 | + |
| 216 | + |
| 217 | + self.cur_batch_count += 1 |
| 218 | + yield batch |
| 219 | + |
| 220 | + except Exception as e: # pylint: disable=broad-except |
| 221 | + self._stop() |
| 222 | + _type, _value, _traceback = sys.exc_info() |
| 223 | + print("Exception in enqueuer.get: %s" % e) |
| 224 | + traceback.print_tb(_traceback) |
| 225 | + raise Exception |
| 226 | + |
| 227 | + def _wait_queue(self): |
| 228 | + """Wait for the queue to be empty.""" |
| 229 | + while True: |
| 230 | + time.sleep(0.1) |
| 231 | + if self.queue.unfinished_tasks == 0 or self.stop_signal.is_set(): |
| 232 | + return |
| 233 | + |
| 234 | + |
| 235 | +def get_worker_id_queue(): |
| 236 | + """Lazily create the queue to track worker ids.""" |
| 237 | + global _WORKER_ID_QUEUE |
| 238 | + if _WORKER_ID_QUEUE is None: |
| 239 | + _WORKER_ID_QUEUE = multiprocessing.Queue() |
| 240 | + return _WORKER_ID_QUEUE |
| 241 | + |
| 242 | +def get_index(uid, i): |
| 243 | + """Get the value from the Ddataset `uid` at index `i`. |
| 244 | +
|
| 245 | + To allow multiple Sequences to be used at the same time, we use `uid` to |
| 246 | + get a specific one. A single Sequence would cause the validation to |
| 247 | + overwrite the training Sequence. |
| 248 | +
|
| 249 | + Arguments: |
| 250 | + uid: int, Sequence identifier |
| 251 | + i: index |
| 252 | +
|
| 253 | + Returns: |
| 254 | + The value at index `i`. |
| 255 | + """ |
| 256 | + return _SHARED_DATASETS[uid].get_sample(i) |
| 257 | + |
| 258 | +def init_pool_generator(gens, random_seed=None, id_queue=None): |
| 259 | + """Initializer function for pool workers. |
| 260 | +
|
| 261 | + Args: |
| 262 | + gens: State which should be made available to worker processes. |
| 263 | + random_seed: An optional value with which to seed child processes. |
| 264 | + id_queue: A multiprocessing Queue of worker ids. This is used to indicate |
| 265 | + that a worker process was created by Keras and can be terminated using |
| 266 | + the cleanup_all_keras_forkpools utility. |
| 267 | + """ |
| 268 | + global _SHARED_DATASETS |
| 269 | + _SHARED_DATASETS = gens |
| 270 | + |
| 271 | + worker_proc = multiprocessing.current_process() |
| 272 | + |
| 273 | + # name isn't used for anything, but setting a more descriptive name is helpful |
| 274 | + # when diagnosing orphaned processes. |
| 275 | + worker_proc.name = 'Enqueuer_worker_{}'.format(worker_proc.name) |
| 276 | + |
| 277 | + if random_seed is not None: |
| 278 | + np.random.seed(random_seed + worker_proc.ident) |
| 279 | + |
| 280 | + if id_queue is not None: |
| 281 | + # If a worker dies during init, the pool will just create a replacement. |
| 282 | + id_queue.put(worker_proc.ident, block=True, timeout=0.1) |
0 commit comments