This repository was archived by the owner on Jun 5, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathobj_detect.py
executable file
·474 lines (363 loc) · 17.1 KB
/
obj_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# coding=utf-8
"""Object detection inferencing. single gpu only."""
import os
import argparse
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # so here won't have poll allocator info
# remove all the annoying warnings from tf v1.10 to v1.13
import logging
logging.getLogger('tensorflow').disabled = True
import numpy as np
import tensorflow as tf
import cv2
from tqdm import tqdm
from models import get_model
from nn import resizeImage, fill_full_mask
import math, time, json, random, operator
import pickle
import pycocotools.mask as cocomask
from utils import Dataset, Summary, get_op_tensor_name
from class_ids import targetClass2id_new_nopo
targetClass2id = targetClass2id_new_nopo
targetid2class = {targetClass2id[one]:one for one in targetClass2id}
from class_ids import coco_obj_class_to_id, coco_obj_id_to_class, coco_obj_to_actev_obj
def get_args():
global targetClass2id, targetid2class
parser = argparse.ArgumentParser()
parser.add_argument("--video_dir", default=None)
parser.add_argument("--video_lst_file", default=None, help="video_file_path = os.path.join(video_dir, $line)")
parser.add_argument("--out_dir", default=None, help="out_dir/$basename/%%d.json, start from 0 index")
parser.add_argument("--frame_gap", default=8, type=int)
parser.add_argument("--threshold_conf",default=0.0001,type=float)
parser.add_argument("--is_load_from_pb", action="store_true", help="load from a frozen graph")
# ------ for box feature extraction
parser.add_argument("--get_box_feat", action="store_true",help="this will generate (num_box, 256, 7, 7) tensor for each frame")
parser.add_argument("--box_feat_path", default=None,help="output will be out_dir/$basename/%%d.npy, start from 0 index")
# ---- gpu params
parser.add_argument("--gpu", default=1, type=int, help="number of gpu")
parser.add_argument("--gpuid_start", default=0, type=int, help="start of gpu id")
parser.add_argument('--im_batch_size', type=int, default=1)
parser.add_argument("--use_all_mem", action="store_true")
parser.add_argument("--version", type=int, default=4, help="model version")
parser.add_argument("--is_coco_model", action="store_true",
help="is coco model, will output coco classes instead")
# --- for internal visualization
parser.add_argument("--visualize", action="store_true")
parser.add_argument("--vis_path", default=None)
parser.add_argument("--vis_thres", default=0.7, type=float)
# ----------- model params
parser.add_argument("--num_class", type=int, default=15, help="num catagory + 1 background")
parser.add_argument("--model_path", default="/app/object_detection_model")
parser.add_argument("--rpn_batch_size", type=int, default=256, help="num roi per image for RPN training")
parser.add_argument("--frcnn_batch_size", type=int, default=512, help="num roi per image for fastRCNN training")
parser.add_argument("--rpn_test_post_nms_topk", type=int, default=1000 ,help="test post nms, input to fast rcnn")
parser.add_argument("--max_size", type=int, default=1920, help="num roi per image for RPN and fastRCNN training")
parser.add_argument("--short_edge_size", type=int, default=1080, help="num roi per image for RPN and fastRCNN training")
# ---- tempory: for activity detection model
parser.add_argument("--actasobj", action="store_true")
parser.add_argument("--actmodel_path", default="/app/activity_detection_model")
parser.add_argument("--resnet152",action="store_true",help="")
parser.add_argument("--resnet50",action="store_true",help="")
parser.add_argument("--resnet34",action="store_true",help="")
parser.add_argument("--resnet18",action="store_true",help="")
parser.add_argument("--use_resnext", action="store_true", help="")
parser.add_argument("--use_se",action="store_true",help="use squeeze and excitation in backbone")
parser.add_argument("--use_frcnn_class_agnostic", action="store_true", help="use class agnostic fc head")
parser.add_argument("--use_att_frcnn_head", action="store_true",help="use attention to sum [K, 7, 7, C] feature into [K, C]")
# ---- COCO model
parser.add_argument("--add_mask", action="store_true")
# --------------- exp junk
parser.add_argument("--use_dilations", action="store_true", help="use dilations=2 in res5")
parser.add_argument("--use_deformable", action="store_true", help="use deformable conv")
parser.add_argument("--add_act",action="store_true", help="add activitiy model")
parser.add_argument("--finer_resolution", action="store_true", help="fpn use finer resolution conv")
parser.add_argument("--fix_fpn_model", action="store_true", help="for finetuneing a fpn model, whether to fix the lateral and poshoc weights")
parser.add_argument("--is_cascade_rcnn", action="store_true", help="cascade rcnn on top of fpn")
parser.add_argument("--add_relation_nn", action="store_true", help="add relation network feature")
parser.add_argument("--test_frame_extraction", action="store_true")
parser.add_argument("--use_my_naming", action="store_true")
# for efficient use of COCO model classes
parser.add_argument("--use_partial_classes", action="store_true")
args = parser.parse_args()
if args.use_partial_classes:
assert args.is_coco_model
args.partial_classes = [classname for classname in coco_obj_to_actev_obj]
assert args.gpu == args.im_batch_size # one gpu one image
assert args.gpu == 1, "Currently only support single-gpu inference"
if args.is_load_from_pb:
args.load_from = args.model_path
args.controller = "/cpu:0" # parameter server
targetid2class = targetid2class
targetClass2id = targetClass2id
if args.actasobj:
from class_ids import targetAct2id
targetClass2id = targetAct2id
targetid2class = {targetAct2id[one]:one for one in targetAct2id}
assert len(targetClass2id) == args.num_class, (len(targetClass2id), args.num_class)
assert args.version in [2, 3, 4, 5, 6], "Currently we only have version 2-6 model"
if args.version == 2:
pass
elif args.version == 3:
args.use_dilations = True
elif args.version == 4:
args.use_frcnn_class_agnostic = True
args.use_dilations = True
elif args.version == 5:
args.use_frcnn_class_agnostic = True
args.use_dilations = True
elif args.version == 6:
args.use_frcnn_class_agnostic = True
args.use_se = True
if args.is_coco_model:
assert args.version == 2
targetClass2id = coco_obj_class_to_id
targetid2class = coco_obj_id_to_class
args.num_class = 81
if args.use_partial_classes:
partial_classes = ["BG"] + args.partial_classes
targetClass2id = {classname: i
for i, classname in enumerate(partial_classes)}
targetid2class = {targetClass2id[o]: o for o in targetClass2id}
# ---------------more defautls
args.is_pack_model = False
args.diva_class3 = True
args.diva_class = False
args.diva_class2 = False
args.use_small_object_head = False
args.use_so_score_thres = False
args.use_so_association = False
args.use_gn = False
args.so_person_topk = 10
args.use_conv_frcnn_head = False
args.use_cpu_nms = False
args.use_bg_score = False
args.freeze_rpn = True
args.freeze_fastrcnn = True
args.freeze = 2
args.small_objects = ["Prop", "Push_Pulled_Object", "Prop_plus_Push_Pulled_Object", "Bike"]
args.no_obj_detect = False
#args.add_mask = False
args.is_fpn = True
#args.new_tensorpack_model = True
args.mrcnn_head_dim = 256
args.is_train = False
args.rpn_min_size = 0
args.rpn_proposal_nms_thres = 0.7
args.anchor_strides = (4, 8, 16, 32, 64)
args.fpn_resolution_requirement = float(args.anchor_strides[3]) # [3] is 32, since we build FPN with r2,3,4,5?
args.max_size = np.ceil(args.max_size / args.fpn_resolution_requirement) * args.fpn_resolution_requirement
args.fpn_num_channel = 256
args.fpn_frcnn_fc_head_dim = 1024
# ---- all the mask rcnn config
args.resnet_num_block = [3, 4, 23, 3] # resnet 101
args.use_basic_block = False # for resnet-34 and resnet-18
if args.resnet152:
args.resnet_num_block = [3, 8, 36, 3]
if args.resnet50:
args.resnet_num_block = [3, 4, 6, 3]
if args.resnet34:
args.resnet_num_block = [3, 4, 6, 3]
args.use_basic_block = True
if args.resnet18:
args.resnet_num_block = [2, 2, 2, 2]
args.use_basic_block = True
args.anchor_stride = 16 # has to be 16 to match the image feature total stride
args.anchor_sizes = (32,64,128,256,512)
args.anchor_ratios = (0.5, 1, 2)
args.num_anchors = len(args.anchor_sizes) * len(args.anchor_ratios)
# iou thres to determine anchor label
#args.positive_anchor_thres = 0.7
#args.negative_anchor_thres = 0.3
# when getting region proposal, avoid getting too large boxes
args.bbox_decode_clip = np.log(args.max_size / 16.0)
# fastrcnn
args.fastrcnn_batch_per_im = args.frcnn_batch_size
args.fastrcnn_bbox_reg_weights = np.array([10, 10, 5, 5], dtype='float32')
args.fastrcnn_fg_thres = 0.5 # iou thres
#args.fastrcnn_fg_ratio = 0.25 # 1:3 -> pos:neg
# testing
args.rpn_test_pre_nms_topk = 6000
args.fastrcnn_nms_iou_thres = 0.5
args.result_score_thres = args.threshold_conf
args.result_per_im = 100
return args
def initialize(config, sess):
tf.global_variables_initializer().run()
allvars = tf.global_variables()
allvars = [var for var in allvars if "global_step" not in var.name]
restore_vars = allvars
opts = ["Adam","beta1_power","beta2_power","Adam_1","Adadelta_1","Adadelta","Momentum"]
restore_vars = [var for var in restore_vars if var.name.split(":")[0].split("/")[-1] not in opts]
saver = tf.train.Saver(restore_vars, max_to_keep=5)
load_from = config.model_path
ckpt = tf.train.get_checkpoint_state(load_from)
if ckpt and ckpt.model_checkpoint_path:
loadpath = ckpt.model_checkpoint_path
saver.restore(sess, loadpath)
else:
if os.path.exists(load_from):
if load_from.endswith(".ckpt"):
# load_from should be a single .ckpt file
saver.restore(sess, load_from)
elif load_from.endswith(".npz"):
# load from dict
weights = np.load(load_from)
params = {get_op_tensor_name(n)[1]:v
for n, v in dict(weights).iteritems()}
param_names = set(params.iterkeys())
variables = restore_vars
variable_names = set([k.name for k in variables])
intersect = variable_names & param_names
restore_vars = [v for v in variables if v.name in intersect]
with sess.as_default():
for v in restore_vars:
vname = v.name
v.load(params[vname])
not_used = [(one, weights[one].shape)
for one in weights.keys()
if get_op_tensor_name(one)[1] not in intersect]
if not not_used:
print("warning, %s/%s in npz not restored:%s" %(len(weights.keys()) - len(intersect), len(weights.keys()), not_used))
else:
raise Exception("Not recognized model type:%s" % load_from)
else:
raise Exception("Model not exists")
# check argument
def check_args(args):
assert args.video_dir is not None
assert args.video_lst_file is not None
assert args.frame_gap >=1
if args.get_box_feat:
assert args.box_feat_path is not None
if not os.path.exists(args.box_feat_path):
os.makedirs(args.box_feat_path)
#print("cv2 version %s"%(cv2.__version__)
if __name__ == "__main__":
args = get_args()
check_args(args)
videolst = [os.path.join(args.video_dir, one.strip()) for one in open(args.video_lst_file).readlines()]
if not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
if args.visualize:
from viz import draw_boxes
vis_path = args.vis_path
if not os.path.exists(vis_path):
os.makedirs(vis_path)
# 1. load the object detection model
model = get_model(args,args.gpuid_start, controller=args.controller)
tfconfig = tf.ConfigProto(allow_soft_placement=True)
if not args.use_all_mem:
tfconfig.gpu_options.allow_growth = True
tfconfig.gpu_options.visible_device_list = "%s"%(",".join(["%s"%i for i in range(args.gpuid_start, args.gpuid_start+args.gpu)]))
with tf.Session(config=tfconfig) as sess:
if not args.is_load_from_pb:
initialize(config=args, sess=sess)
for videofile in tqdm(videolst, ascii=True):
# 2. read the video file
try:
vcap = cv2.VideoCapture(videofile)
if not vcap.isOpened():
raise Exception("cannot open %s"%videofile)
except Exception as e:
raise e
#videoname = os.path.splitext(os.path.basename(videofile))[0]
videoname = os.path.basename(videofile)
video_out_path = os.path.join(args.out_dir, videoname)
if not os.path.exists(video_out_path):
os.makedirs(video_out_path)
# for box feature
if args.get_box_feat:
feat_out_path = os.path.join(args.box_feat_path, videoname)
if not os.path.exists(feat_out_path):
os.makedirs(feat_out_path)
# opencv 2
if cv2.__version__.split(".")[0] == "2":
frame_count = vcap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT)
else:
# opencv 3/4
frame_count = vcap.get(cv2.CAP_PROP_FRAME_COUNT)
# 3. read frame one by one
cur_frame=0
vis_count=0
frame_stack = []
while cur_frame < frame_count:
suc, frame = vcap.read()
if not suc:
cur_frame+=1
tqdm.write("warning, %s frame of %s failed"%(cur_frame,videoname))
continue
# skip some frame if frame_gap >1
if cur_frame % args.frame_gap != 0:
cur_frame+=1
continue
# 4. run detection on the frame stack if there is enough
im = frame.astype("float32")
if args.test_frame_extraction:
frame_file = os.path.join(video_out_path, "%d.jpg"%cur_frame)
cv2.imwrite(frame_file, im)
cur_frame+=1
continue
resized_image = resizeImage(im, args.short_edge_size, args.max_size)
scale = (resized_image.shape[0]*1.0/im.shape[0] + resized_image.shape[1]*1.0/im.shape[1])/2.0
feed_dict = model.get_feed_dict_forward(resized_image)
if args.get_box_feat:
sess_input = [model.final_boxes, model.final_labels, model.final_probs, model.fpn_box_feat]
final_boxes, final_labels, final_probs, box_feats = sess.run(sess_input,feed_dict=feed_dict)
assert len(box_feats) == len(final_boxes)
# save the box feature first
featfile = os.path.join(feat_out_path, "%d.npy"%(cur_frame))
np.save(featfile, box_feats)
else:
if args.add_mask:
sess_input = [model.final_boxes, model.final_labels, model.final_probs, model.final_masks]
final_boxes, final_labels, final_probs, final_masks = sess.run(sess_input, feed_dict=feed_dict)
else:
sess_input = [model.final_boxes, model.final_labels, model.final_probs]
final_boxes, final_labels, final_probs = sess.run(sess_input, feed_dict=feed_dict)
#print("sess run done"
# scale back the box to original image size
final_boxes = final_boxes / scale
if args.add_mask:
final_masks = [fill_full_mask(box, mask, im.shape[:2]) for box, mask in zip(final_boxes, final_masks)]
# save as json
pred = []
for j,(box, prob, label) in enumerate(zip(final_boxes,final_probs,final_labels)):
box[2] -= box[0]
box[3] -= box[1] # produce x,y,w,h output
cat_id = label
cat_name = targetid2class[cat_id]
# encode mask
rle = None
if args.add_mask:
final_mask = final_masks[j] # [14, 14]
rle = cocomask.encode(np.array(final_mask[:, :, None], order="F"))[0]
rle['counts'] = rle['counts'].decode("ascii")
res = {
"category_id":cat_id,
"cat_name":cat_name, #[0-80]
"score":float(round(prob,7)),
"bbox": list(map(lambda x:float(round(x,2)),box)),
"segmentation":rle,
}
pred.append(res)
#predfile = os.path.join(args.out_dir, "%s_F_%08d.json"%(videoname, cur_frame))
if args.use_my_naming:
predfile = os.path.join(video_out_path, "%s_F_%08d.json"%(os.path.splitext(videoname)[0], cur_frame))
else:
predfile = os.path.join(video_out_path, "%d.json"%(cur_frame))
with open(predfile,"w") as f:
json.dump(pred, f)
# for visualization
if args.visualize:
good_ids = [i for i in range(len(final_boxes)) if final_probs[i] >= args.vis_thres]
final_boxes,final_labels,final_probs = final_boxes[good_ids],final_labels[good_ids],final_probs[good_ids]
vis_boxes = np.asarray([[box[0], box[1], box[2]+box[0], box[3]+box[1]] for box in final_boxes])
vis_labels = ["%s_%.2f"%(targetid2class[cat_id],prob) for cat_id,prob in zip(final_labels,final_probs)]
newim = draw_boxes(im,vis_boxes,vis_labels, color=np.array([255,0,0]),font_scale=0.5,thickness=2)
vis_file = os.path.join(vis_path,"%s_F_%08d.jpg"%(videoname,vis_count))
cv2.imwrite(vis_file, newim)
vis_count+=1
cur_frame+=1
if args.test_frame_extraction:
tqdm.write("video %s got %s frames, opencv said frame count is %s" % (videoname, cur_frame, frame_count))
vcap.release()
cv2.destroyAllWindows()