forked from leoxiaobin/deep-high-resolution-net.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
84 lines (70 loc) · 3 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
class JointsMSELoss(nn.Module):
def __init__(self, use_target_weight):
super(JointsMSELoss, self).__init__()
self.criterion = nn.MSELoss(reduction='mean')
self.use_target_weight = use_target_weight
def forward(self, output, target, target_weight):
batch_size = output.size(0)
num_joints = output.size(1)
heatmaps_pred = output.reshape((batch_size, num_joints, -1)).split(1, 1)
heatmaps_gt = target.reshape((batch_size, num_joints, -1)).split(1, 1)
loss = 0
for idx in range(num_joints):
heatmap_pred = heatmaps_pred[idx].squeeze()
heatmap_gt = heatmaps_gt[idx].squeeze()
if self.use_target_weight:
loss += 0.5 * self.criterion(
heatmap_pred.mul(target_weight[:, idx]),
heatmap_gt.mul(target_weight[:, idx])
)
else:
loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt)
return loss / num_joints
class JointsOHKMMSELoss(nn.Module):
def __init__(self, use_target_weight, topk=8):
super(JointsOHKMMSELoss, self).__init__()
self.criterion = nn.MSELoss(reduction='none')
self.use_target_weight = use_target_weight
self.topk = topk
def ohkm(self, loss):
ohkm_loss = 0.
for i in range(loss.size()[0]):
sub_loss = loss[i]
topk_val, topk_idx = torch.topk(
sub_loss, k=self.topk, dim=0, sorted=False
)
tmp_loss = torch.gather(sub_loss, 0, topk_idx)
ohkm_loss += torch.sum(tmp_loss) / self.topk
ohkm_loss /= loss.size()[0]
return ohkm_loss
def forward(self, output, target, target_weight):
batch_size = output.size(0)
num_joints = output.size(1)
heatmaps_pred = output.reshape((batch_size, num_joints, -1)).split(1, 1)
heatmaps_gt = target.reshape((batch_size, num_joints, -1)).split(1, 1)
loss = []
for idx in range(num_joints):
heatmap_pred = heatmaps_pred[idx].squeeze()
heatmap_gt = heatmaps_gt[idx].squeeze()
if self.use_target_weight:
loss.append(0.5 * self.criterion(
heatmap_pred.mul(target_weight[:, idx]),
heatmap_gt.mul(target_weight[:, idx])
))
else:
loss.append(
0.5 * self.criterion(heatmap_pred, heatmap_gt)
)
loss = [l.mean(dim=1).unsqueeze(dim=1) for l in loss]
loss = torch.cat(loss, dim=1)
return self.ohkm(loss)