forked from tatsu-lab/stanford_alpaca
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
212 lines (169 loc) · 8.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from dataclasses import dataclass, field
from typing import Optional, Dict
import transformers
from transformers import Trainer, TrainerCallback, TrainerState, TrainerControl
from peft import LoraConfig, get_peft_model
import torch
import torch.nn as nn
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from prepare_data import make_supervised_data_module
import bitsandbytes as bnb
DEFAULT_PAD_TOKEN = "[PAD]"
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
lora_r: int = field(default=16, metadata={"help": "The Lora R parameter"})
@dataclass
class DataArguments:
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
@dataclass
class TrainingArguments(transformers.TrainingArguments):
train_with_peft: bool = field(default=False)
gradient_checkpointing: bool = field(default=False)
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch") # paged_adamw_8bit
model_max_length: int = field(
default=512,
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
)
class SavePeftModelCallback(TrainerCallback):
"""https://github.com/huggingface/peft/issues/96#issuecomment-1460080427"""
def on_save(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
checkpoint_folder = os.path.join(
args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}"
)
peft_model_path = os.path.join(checkpoint_folder, "adapter_model")
kwargs["model"].save_pretrained(peft_model_path)
pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin")
if os.path.exists(pytorch_model_path):
os.remove(pytorch_model_path)
return control
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def train():
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
trust_remote_code=True,
# loading in 8 bit might lead to problems:
# but so far we don't know if 8 bit is the issue or training a fp16 trained model in bf16 or both
# since I did not see huge gains in memory usage when loading in 8 bit,
# fp16 pythia 6.7b with 8 bit: 110s/it; without 8 bit: 30s/it, memory usage the same ==> disable it for now
# however, in the lora colab it is enabled: https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o?usp=sharing#scrollTo=AQ_HCYruWIHU
# load_in_8bit=True if training_args.train_with_peft else False,
device_map='auto' if training_args.train_with_peft else None,
)
print(model.config)
print(model)
if 'mosaicml/mpt' in model_args.model_name_or_path:
model.config.attn_config['attn_impl'] = 'triton'
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
)
if tokenizer.pad_token is None:
print(f"Adding {DEFAULT_PAD_TOKEN} to the tokenizer.")
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
tokenizer=tokenizer,
model=model,
)
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable() # reduce number of stored activations ==> greatly reduces memory usage
if training_args.train_with_peft:
for param in model.parameters():
param.requires_grad = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
param.data = param.data.to(torch.float32)
model.enable_input_require_grads()
class CastOutputToFloat(nn.Sequential):
def forward(self, x): return super().forward(x).to(torch.float32)
if isinstance(model.config, transformers.GPTNeoXConfig):
model.embed_out = CastOutputToFloat(model.embed_out)
target_modules = ["query_key_value", "dense"]
elif isinstance(model.config, transformers.OPTConfig):
model.lm_head = CastOutputToFloat(model.lm_head)
target_modules = ["q_proj", "v_proj"]
elif isinstance(model.config, transformers.GPT2Config):
model.lm_head = CastOutputToFloat(model.lm_head)
target_modules = ["c_attn", "c_proj"]
elif isinstance(model.config, transformers.LlamaConfig):
model.lm_head = CastOutputToFloat(model.lm_head)
target_modules = ["q_proj", "v_proj"]
# elif isinstance(model.config, transformers.RWConfig):
elif "falcon" in model_args.model_name_or_path:
model.lm_head = CastOutputToFloat(model.lm_head)
target_modules = ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"]
else:
raise ValueError(f"Unknown model: {model_args.model_name_or_path}")
config = LoraConfig(
r=model_args.lora_r,
lora_alpha=32,
target_modules=target_modules,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
model.print_trainable_parameters()
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
# TODO save this to a cache
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args,
template=False, supervised=True)
callbacks = [SavePeftModelCallback] if training_args.train_with_peft else []
trainer = Trainer(model=model, tokenizer=tokenizer,
callbacks=callbacks,
args=training_args,
**data_module)
trainer.train()
hf_name = f"lawinstruct/LegalLM-{model_args.model_name_or_path.split('/')[1]}"
if training_args.train_with_peft:
model.save_pretrained(training_args.output_dir)
hf_name += "-lora"
else:
trainer.save_state()
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
# model.push_to_hub(hf_name, use_auth_token=True, private=True) # disable for now because it is unreliable
if __name__ == "__main__":
train()