forked from tatsu-lab/stanford_alpaca
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_data.py
148 lines (122 loc) · 5.96 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import copy
import logging
from dataclasses import dataclass
from typing import Dict, Sequence
import transformers
from torch.utils.data import Dataset
import torch
import utils
from sample_lawinstruct import generate_lawinstruct
IGNORE_INDEX = -100
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
),
}
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors="pt",
padding="longest",
)
for text in strings
]
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def preprocess(
sources: Sequence[str],
targets: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
supervised: bool = True,
) -> Dict:
"""Preprocess the data by tokenizing."""
examples = [s + t for s, t in zip(sources, targets)]
examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
input_ids = examples_tokenized["input_ids"]
labels = copy.deepcopy(input_ids)
if supervised:
for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
label[:source_len] = IGNORE_INDEX # ignore source, all tokens are set to -100
# Filtering out examples that are too long
# to make sure that we don't train on examples where we have no or partial targets
for i in range(len(input_ids)):
# filter if longer than tokenizer.model_max_length
if len(input_ids[i]) > tokenizer.model_max_length:
input_ids[i] = None
labels[i] = None
input_ids = [x for x in input_ids if x is not None]
labels = [x for x in labels if x is not None]
return dict(input_ids=input_ids, labels=labels)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer, template, supervised):
super(SupervisedDataset, self).__init__()
if "max-seq-len:" in data_path and "samples:" in data_path and "tasks:" in data_path:
max_seq_len, num_samples, tasks = [x.split(":")[1] for x in data_path.split("_")]
logging.warning(f"Generating data with max_seq_len={max_seq_len} and num_samples={num_samples} and tasks={tasks} ...")
list_data_dict = generate_lawinstruct(max_seq_len=int(max_seq_len), num_samples=int(num_samples), debug=False,
tasks=tasks)
else: # it is a real data path
logging.warning(f"Loading data from {data_path} ...")
list_data_dict = utils.jload(data_path)
logging.warning("Formatting inputs...")
if template:
sources = [
PROMPT_DICT["prompt_input"].format_map(example)
if example.get("input", "") != "" else
PROMPT_DICT["prompt_no_input"].format_map(example)
for example in list_data_dict if 'instruction' in example
]
else:
sources = [f"{example['instruction']}\n\n{example['input']}\n\n"
if example.get("input", "") != "" else
f"{example['instruction']}\n\n"
for example in list_data_dict
if 'instruction' in example and example.get("instruction", "") != ""]
targets = [f"{example['output']}\n\n{tokenizer.eos_token}" for example in list_data_dict]
logging.warning("Tokenizing inputs... This may take some time...")
data_dict = preprocess(sources, targets, tokenizer, supervised=supervised)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(input_ids=self.input_ids[i], labels=self.labels[i])
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
)
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
return dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args, template, supervised) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path,
template=template, supervised=supervised)
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)