@@ -17,6 +17,52 @@ while still keeping the overall weight under or equal to 15 kg?
1717
1818![ knapsack problem] ( https://upload.wikimedia.org/wikipedia/commons/f/fd/Knapsack.svg )
1919
20+ ## Definition
21+
22+ ### 0/1 knapsack problem
23+
24+ The most common problem being solved is the ** 0/1 knapsack problem** ,
25+ which restricts the number ` xi ` of copies of each kind of item to zero or one.
26+
27+ Given a set of n items numbered from ` 1 ` up to ` n ` , each with a
28+ weight ` wi ` and a value ` vi ` , along with a maximum weight
29+ capacity ` W ` ,
30+
31+ maximize ![ 0/1 knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/85620037d368d2136fb3361702df6a489416931b )
32+
33+ subject to ![ 0/1 knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/dd6e7c9bca4397980976ea6d19237500ce3b8176 )
34+ and ![ 0/1 knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/07dda71da2a630762c7b21b51ea54f86f422f951 )
35+
36+ Here ` xi ` represents the number of instances of item ` i ` to
37+ include in the knapsack. Informally, the problem is to maximize
38+ the sum of the values of the items in the knapsack so that the
39+ sum of the weights is less than or equal to the knapsack's
40+ capacity.
41+
42+ ### Bounded knapsack problem (BKP)
43+
44+ The ** bounded knapsack problem (BKP)** removes the restriction
45+ that there is only one of each item, but restricts the number
46+ ` xi ` of copies of each kind of item to a maximum non-negative
47+ integer value ` c ` :
48+
49+ maximize ![ bounded knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/85620037d368d2136fb3361702df6a489416931b )
50+
51+ subject to ![ bounded knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/dd6e7c9bca4397980976ea6d19237500ce3b8176 )
52+ and ![ bounded knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/6c8c5ac4f8247b3b8e01e89de76a1df0ea969821 )
53+
54+ ### Unbounded knapsack problem (UKP)
55+
56+ The ** unbounded knapsack problem (UKP)** places no upper bound
57+ on the number of copies of each kind of item and can be
58+ formulated as above except for that the only restriction
59+ on ` xi ` is that it is a non-negative integer.
60+
61+ maximize ![ unbounded knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/85620037d368d2136fb3361702df6a489416931b )
62+
63+ subject to ![ unbounded knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/dd6e7c9bca4397980976ea6d19237500ce3b8176 )
64+ and ![ unbounded knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/90a99710f61d5dea19e49ae5b31164d2b56b07e3 )
65+
2066## References
2167
2268- [ Wikipedia] ( https://en.wikipedia.org/wiki/Knapsack_problem )
0 commit comments