{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "N = 100 # no. of customers\n", "C = [[] for i in range(N)] # customer dishes assignment\n", "K = 0 # no. of current disches selected\n", "dishes = [] # no. of customers sampled with each dish\n", "alpha = 1 # Poisson prior" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "for n in range(N):\n", " for k in range(K):\n", " p = dishes[k] / n\n", " z = np.random.binomial(n=1, p=p)\n", " C[n].append(z) # update customer dish assignment\n", " dishes[k] = dishes[k] + 1 # update customer count for dish k\n", " \n", " # Lets try new dishes\n", " new_dishes = np.random.poisson(lam=alpha)\n", " \n", " for k in range(new_dishes):\n", " C[n].append(1)\n", " dishes.append(1)\n", " \n", " # Update the dish count\n", " K += new_dishes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Convert to binary matrix " ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "C_ = np.zeros([N, K])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 1. 0. 0. ..., 0. 0. 0.]\n", " [ 1. 0. 0. ..., 0. 0. 0.]\n", " [ 1. 1. 1. ..., 0. 0. 0.]\n", " ..., \n", " [ 1. 1. 1. ..., 0. 0. 0.]\n", " [ 1. 1. 1. ..., 1. 0. 0.]\n", " [ 1. 1. 1. ..., 0. 1. 1.]]\n" ] } ], "source": [ "for n in range(N):\n", " C_[n, 0:len(C[n])] = np.array(C[n])\n", "print(C_)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }