|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stderr", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "Using TensorFlow backend.\n" |
| 13 | + ] |
| 14 | + } |
| 15 | + ], |
| 16 | + "source": [ |
| 17 | + "from utils.mnist_loader import load_mnist\n", |
| 18 | + "from keras.layers import Dense, MaxPool2D, Conv2D, Dropout\n", |
| 19 | + "from keras.layers import Flatten, InputLayer\n", |
| 20 | + "from keras.layers.normalization import BatchNormalization\n", |
| 21 | + "from keras.models import Sequential\n", |
| 22 | + "from keras.utils import np_utils\n", |
| 23 | + "from keras.initializers import Constant" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": 5, |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [ |
| 31 | + { |
| 32 | + "ename": "FileNotFoundError", |
| 33 | + "evalue": "[Errno 2] No such file or directory: './data/train-labels-idx1-ubyte.gz'", |
| 34 | + "output_type": "error", |
| 35 | + "traceback": [ |
| 36 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 37 | + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", |
| 38 | + "\u001b[0;32m<ipython-input-5-006d3f2b0e9f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Load data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m# Function load_minst is available in git.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mX_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_mnist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'./data'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'train'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mX_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_test\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_mnist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'./data'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m't10k'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 39 | + "\u001b[0;32m~/Projects/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials/deep-learning/Keras Tutorials/utils/mnist_loader.py\u001b[0m in \u001b[0;36mload_mnist\u001b[0;34m(path, kind)\u001b[0m\n\u001b[1;32m 12\u001b[0m % kind)\n\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mgzip\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mlbpath\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 15\u001b[0m labels = np.frombuffer(lbpath.read(), dtype=np.uint8,\n\u001b[1;32m 16\u001b[0m offset=8)\n", |
| 40 | + "\u001b[0;32m~/anaconda/lib/python3.6/gzip.py\u001b[0m in \u001b[0;36mopen\u001b[0;34m(filename, mode, compresslevel, encoding, errors, newline)\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0mgz_mode\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreplace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"t\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 52\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbytes\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPathLike\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 53\u001b[0;31m \u001b[0mbinary_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mGzipFile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgz_mode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcompresslevel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 54\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"read\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"write\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[0mbinary_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mGzipFile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgz_mode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcompresslevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 41 | + "\u001b[0;32m~/anaconda/lib/python3.6/gzip.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, filename, mode, compresslevel, fileobj, mtime)\u001b[0m\n\u001b[1;32m 161\u001b[0m \u001b[0mmode\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;34m'b'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 162\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfileobj\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 163\u001b[0;31m \u001b[0mfileobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmyfileobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuiltins\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 164\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 165\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfileobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'name'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m''\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 42 | + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: './data/train-labels-idx1-ubyte.gz'" |
| 43 | + ] |
| 44 | + } |
| 45 | + ], |
| 46 | + "source": [ |
| 47 | + "# Load data\n", |
| 48 | + "# Function load_minst is available in git.\n", |
| 49 | + "X_train, y_train = load_mnist('./data', kind='train')\n", |
| 50 | + "X_test, y_test = load_mnist('./data', kind='t10k')" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": null, |
| 56 | + "metadata": { |
| 57 | + "collapsed": true |
| 58 | + }, |
| 59 | + "outputs": [], |
| 60 | + "source": [] |
| 61 | + } |
| 62 | + ], |
| 63 | + "metadata": { |
| 64 | + "kernelspec": { |
| 65 | + "display_name": "Python 3", |
| 66 | + "language": "python", |
| 67 | + "name": "python3" |
| 68 | + }, |
| 69 | + "language_info": { |
| 70 | + "codemirror_mode": { |
| 71 | + "name": "ipython", |
| 72 | + "version": 3 |
| 73 | + }, |
| 74 | + "file_extension": ".py", |
| 75 | + "mimetype": "text/x-python", |
| 76 | + "name": "python", |
| 77 | + "nbconvert_exporter": "python", |
| 78 | + "pygments_lexer": "ipython3", |
| 79 | + "version": "3.6.1" |
| 80 | + } |
| 81 | + }, |
| 82 | + "nbformat": 4, |
| 83 | + "nbformat_minor": 2 |
| 84 | +} |
0 commit comments