-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWald_Friedman_utils.py
executable file
·403 lines (324 loc) · 12.5 KB
/
Wald_Friedman_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
"""
File: Wald_Friedman.py
Authors: Chase Coleman, Tom Sargent
This presents a version of the problem that Friedman couldn't solve, and
will use dynamic programming in a clever way in order to help the Navy
choose the appropriate projectile.
References
----------
Friedman, Milton and Friedman, Rose. Two lucky people: memoirs / Milton & Rose
D. Friedman. The University of Chicago Press. Chicago. 1998
"""
import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate as interp
import scipy.stats as st
import seaborn as sb
import quantecon as qe
class WaldFriedman(object):
"""
This class is used to solve the problem presented in the "Wald Friedman"
notebook presented on the QuantEcon website.
Parameters
----------
c : scalar(Float64)
Cost of postponing decision
L0 : scalar(Float64)
Cost of choosing model 0 when the truth is model 1
L1 : scalar(Float64)
Cost of choosing model 1 when the truth is model 0
f0 : array_like(Float64)
A finite state probability distribution
f1 : array_like(Float64)
A finite state probability distribution
m : scalar(Int)
Number of points to use in function approximation
"""
def __init__(self, c, L0, L1, f0, f1, m=25):
self.c = c
self.L0, self.L1 = L0, L1
self.m = m
self.pgrid = np.linspace(0.0, 1.0, m)
# Renormalize distributions so nothing is "too" small
f0 = np.clip(f0, 1e-8, 1-1e-8)
f1 = np.clip(f1, 1e-8, 1-1e-8)
self.f0 = f0 / np.sum(f0)
self.f1 = f1 / np.sum(f1)
self.J = np.zeros(m)
def current_distribution(self, p):
"""
This function takes a value for the probability with which
the correct model is model 0 and returns the mixed
distribution that corresponds with that belief.
"""
return p*self.f0 + (1-p)*self.f1
def bayes_update_k(self, p, k):
"""
This function takes a value for p, and a realization of the
random variable and calculates the value for p tomorrow.
"""
f0_k = self.f0[k]
f1_k = self.f1[k]
p_tp1 = p*f0_k / (p*f0_k + (1-p)*f1_k)
return np.clip(p_tp1, 0, 1)
def bayes_update_all(self, p):
"""
This is similar to `bayes_update_k` except it returns a
new value for p for each realization of the random variable
"""
return np.clip(p*self.f0 / (p*self.f0 + (1-p)*self.f1), 0, 1)
def payoff_choose_f0(self, p):
"For a given probability specify the cost of accepting model 0"
return (1-p)*self.L0
def payoff_choose_f1(self, p):
"For a given probability specify the cost of accepting model 1"
return p*self.L1
def EJ(self, p, J):
"""
This function evaluates the expectation of the value function
at period t+1. It does so by taking the current probability
distribution over outcomes:
p(z_{k+1}) = p_k f_0(z_{k+1}) + (1-p_k) f_1(z_{k+1})
and evaluating the value function at the possible states
tomorrow J(p_{t+1}) where
p_{t+1} = p f0 / ( p f0 + (1-p) f1)
Parameters
----------
p : Scalar(Float64)
The current believed probability that model 0 is the true
model.
J : Function
The current value function for a decision to continue
Returns
-------
EJ : Scalar(Float64)
The expected value of the value function tomorrow
"""
# Pull out information
f0, f1 = self.f0, self.f1
# Get the current believed distribution and tomorrows possible dists
# Need to clip to make sure things don't blow up (go to infinity)
curr_dist = self.current_distribution(p)
tp1_dist = self.bayes_update_all(p)
# Evaluate the expectation
EJ = curr_dist @ J(tp1_dist)
return EJ
def payoff_continue(self, p, J):
"""
For a given probability distribution and value function give
cost of continuing the search for correct model
"""
return self.c + self.EJ(p, J)
def bellman_operator(self, J):
"""
Evaluates the value function for a given continuation value
function; that is, evaluates
J(p) = min( (1-p)L0, pL1, c + E[J(p')])
Uses linear interpolation between points
"""
payoff_choose_f0 = self.payoff_choose_f0
payoff_choose_f1 = self.payoff_choose_f1
payoff_continue = self.payoff_continue
c, L0, L1, f0, f1 = self.c, self.L0, self.L1, self.f0, self.f1
m, pgrid = self.m, self.pgrid
J_out = np.empty(m)
J_interp = interp.UnivariateSpline(pgrid, J, k=1, ext=0)
for (p_ind, p) in enumerate(pgrid):
# Payoff of choosing model 0
p_c_0 = payoff_choose_f0(p)
p_c_1 = payoff_choose_f1(p)
p_con = payoff_continue(p, J_interp)
J_out[p_ind] = min(p_c_0, p_c_1, p_con)
return J_out
def solve_model(self, tol=1e-7):
J = qe.compute_fixed_point(self.bellman_operator, np.zeros(self.m),
error_tol=tol, verbose=False)
self.J = J
return J
def find_cutoff_rule(self, J):
"""
This function takes a value function and returns the corresponding
cutoffs of where you transition between continue and choosing a
specific model
"""
payoff_choose_f0 = self.payoff_choose_f0
payoff_choose_f1 = self.payoff_choose_f1
m, pgrid = self.m, self.pgrid
# Evaluate cost at all points on grid for choosing a model
p_c_0 = payoff_choose_f0(pgrid)
p_c_1 = payoff_choose_f1(pgrid)
# The cutoff points can be found by differencing these costs with
# the Bellman equation (J is always less than or equal to p_c_i)
lb = pgrid[np.searchsorted(p_c_1 - J, 1e-10) - 1]
ub = pgrid[np.searchsorted(J - p_c_0, -1e-10)]
return (lb, ub)
def simulate(self, f, p0=0.5):
"""
This function takes an initial condition and simulates until it
stops (when a decision is made).
"""
# Check whether vf is computed
if np.sum(self.J) < 1e-8:
self.solve_model()
# Unpack useful info
lb, ub = self.find_cutoff_rule(self.J)
update_p = self.bayes_update_k
curr_dist = self.current_distribution
drv = qe.discrete_rv.DiscreteRV(f)
# Initialize a couple useful variables
decision_made = False
p = p0
t = 0
while decision_made is False:
# Maybe should specify which distribution is correct one so that
# the draws come from the "right" distribution
k = drv.draw()[0]
t = t+1
p = update_p(p, k)
if p < lb:
decision_made = True
decision = 1
elif p > ub:
decision_made = True
decision = 0
return decision, p, t
def simulate_tdgp_f0(self, p0=0.5):
"""
Uses the distribution f0 as the true data generating
process
"""
decision, p, t = self.simulate(self.f0, p0)
if decision == 0:
correct = True
else:
correct = False
return correct, p, t
def simulate_tdgp_f1(self, p0=0.5):
"""
Uses the distribution f1 as the true data generating
process
"""
decision, p, t = self.simulate(self.f1, p0)
if decision == 1:
correct = True
else:
correct = False
return correct, p, t
def stopping_dist(self, ndraws=250, tdgp="f0"):
"""
Simulates repeatedly to get distributions of time needed to make a
decision and how often they are correct.
"""
if tdgp=="f0":
simfunc = self.simulate_tdgp_f0
else:
simfunc = self.simulate_tdgp_f1
# Allocate space
tdist = np.empty(ndraws, int)
cdist = np.empty(ndraws, bool)
for i in range(ndraws):
correct, p, t = simfunc()
tdist[i] = t
cdist[i] = correct
return cdist, tdist
def make_distribution_plots(f0, f1):
"""
This generates the figure that shows the initial versions
of the distributions and plots their combinations.
"""
fig, ax = plt.subplots(2, figsize=(10, 8))
ax[0].set_title("Original Distributions")
ax[0].set_xlabel(r"$k$ Values")
ax[0].set_ylabel(r"Probability of $z_k$")
ax[0].plot(f0, label=r"$f_0$")
ax[0].plot(f1, label=r"$f_1$")
ax[0].legend()
ax[1].set_title("Mixtures of Original Distributions")
ax[1].set_xlabel(r"$k Values$")
ax[1].set_ylabel(r"Probability of $z_k$")
ax[1].plot(0.25*f0 + 0.75*f1, label=r"$p_k$ = 0.25")
ax[1].plot(0.5*f0 + 0.5*f1, label=r"$p_k$ = 0.50")
ax[1].plot(0.75*f0 + 0.25*f1, label=r"$p_k$ = 0.75")
ax[1].legend()
fig.tight_layout()
return fig
def WaldFriedman_Interactive(m):
# NOTE: Could add sliders over other variables
# as well, but only doing over n for now
# Choose parameters
c = 1.25
L0 = 25.0
L1 = 25.0
# Choose n points and distributions
f0 = np.clip(st.beta.pdf(np.linspace(0, 1, m), a=2.0, b=2.5), 1e-6, np.inf)
f0 = f0 / np.sum(f0)
f1 = np.clip(st.beta.pdf(np.linspace(0, 1, m), a=2.5, b=2.0), 1e-6, np.inf)
f1 = f1 / np.sum(f1) # Make sure sums to 1
# Create WaldFriedman class
wf = WaldFriedman(c, L0, L1, f0, f1, m=m)
# Solve via VFI
# Solve using qe's `compute_fixed_point` function
J = qe.compute_fixed_point(wf.bellman_operator, np.zeros(m),
error_tol=1e-7, verbose=False,
max_iter=1000)
lb, ub = wf.find_cutoff_rule(J)
# Plot
fig, ax = plt.subplots(figsize=(8, 6))
fig.suptitle("Value function", size=18)
ax.set_xlabel("Probability of Model 0")
ax.set_ylabel("Value Function")
ax.set_xlim(0, 1.0)
ax.set_ylim(0, 0.5 * max(L0, L1))
ax.plot(wf.pgrid, J)
ax.annotate(r"$\beta$", xy=(ub+0.025, 0.5), size=14)
ax.annotate(r"$\alpha$", xy=(lb+0.025, 0.5), size=14)
ax.vlines(lb, 0.0, wf.payoff_choose_f1(lb), linestyle="--")
ax.vlines(ub, 0.0, wf.payoff_choose_f0(ub), linestyle="--")
fig.show()
def all_param_interact(c, L0, L1, a0, b0, a1, b1, m):
f0 = np.clip(st.beta.pdf(np.linspace(0, 1, m), a=a0, b=b0), 1e-6, np.inf)
f0 = f0 / np.sum(f0)
f1 = np.clip(st.beta.pdf(np.linspace(0, 1, m), a=a1, b=b1), 1e-6, np.inf)
f1 = f1 / np.sum(f1) # Make sure sums to 1
# Create an instance of our WaldFriedman class
wf = WaldFriedman(c, L0, L1, f0, f1, m=m)
# Solve using qe's `compute_fixed_point` function
J = qe.compute_fixed_point(wf.bellman_operator, np.zeros(m),
error_tol=1e-7, verbose=False,
print_skip=10, max_iter=500)
lb, ub = wf.find_cutoff_rule(J)
# Get draws
ndraws = 500
cdist, tdist = wf.stopping_dist(ndraws=ndraws)
fig, ax = plt.subplots(2, 2, figsize=(22, 14))
ax[0, 0].plot(f0, marker="o", markersize=2.5, linestyle="None", label=r"$f_0$")
ax[0, 0].plot(f1, marker="o", markersize=2.5, linestyle="None", label=r"$f_1$")
ax[0, 0].set_ylabel(r"Probability of $z_k$")
ax[0, 0].set_xlabel(r"$k$")
ax[0, 0].set_title("Distributions over Outcomes", size=24)
ax[0, 1].plot(wf.pgrid, J)
ax[0, 1].annotate(r"$\alpha$", xy=(lb+0.025, 0.5), size=14)
ax[0, 1].annotate(r"$\beta$", xy=(ub+0.025, 0.5), size=14)
ax[0, 1].vlines(lb, 0.0, wf.payoff_choose_f1(lb), linestyle="--")
ax[0, 1].vlines(ub, 0.0, wf.payoff_choose_f0(ub), linestyle="--")
ax[0, 1].set_ylim(0, 0.5*max(L0, L1))
ax[0, 1].set_ylabel("Value of Bellman")
ax[0, 1].set_xlabel(r"$p_k$")
ax[0, 1].set_title("Bellman Equation", size=24)
ax[1, 0].hist(tdist, bins=np.max(tdist))
ax[1, 0].set_title("Stopping Times", size=24)
ax[1, 0].set_xlabel("Time")
ax[1, 0].set_ylabel("Density")
ax[1, 1].hist(cdist, bins=2)
ax[1, 1].set_title("Correct Decisions", size=24)
ax[1, 1].annotate("Percent Correct p={}".format(np.mean(cdist)), xy=(0.05, ndraws/2), size=18)
fig.tight_layout()
fig.show()
def convert_rgb(x):
return tuple(map(lambda c: int(256*c), x))
def convert_rgb_hex(rgb):
if isinstance(rgb[0], int):
return '#%02x%02x%02x' % rgb
else:
rgbint = convert_rgb(rgb)
return '#%02x%02x%02x' % rgbint